Рівняння дотичної до кола

Додано: 20 березня 2020
Предмет: Алгебра, 10 клас
Тест виконано: 28 разів
12 запитань
Запитання 1

Виберіть , серед записаних нижче, такі дві формули, які є загальним виглядом рівняння дотичної до кривої в точці х0

варіанти відповідей

у=f'(x0)+f(x0)(x-x0)

у=f(x0)+f'(x0)(x-x0)

у=g(x0)+g'(x0)(x-x0)

у=f(x0)+g(x0)(x-x0)

у=g'(x0)+f(x0)(x-x0)

Запитання 2

Відомо, що k-кутовий коефіцієнт дотичної до кривої f(х) в точці х0. Виберіть правильну формулу для обчислення значення k.

варіанти відповідей

k=f(x0)

k=f'(x0)

k=f(x-x0)

k=f(x0-x)

k=f(x0+x)

Запитання 3

Дотична, проведена до кривої f(x) в точці х0, утворює з додатнім напрямом осі Ох кут φ, k- кутовий коефіцієнт дотичної. Виберіть правильні твердження.

варіанти відповідей

якщо φ=1200, то k=-√3

якщо φ=300, то k=√3/3

якщо φ=1350, то k=1

якщо φ=600, то k=√3

Запитання 4

Дотична, проведена до кривої f(x) в точці з абсцисою х0=2, нахилена до осі Ох під кутом β. Укажіть значення f'(2), якщо tgβ=1.

варіанти відповідей

f'(2)=2

f'(2)=-2

f'(2)=1

f'(2)=-1

f'(2)=3

Запитання 5

Укажіть правильно записане рівняня дотичної до кривої у=f(x) у точці з абсцисою х0=1, якщо f(1)=3 i f'(1)=2

варіанти відповідей

у=3+2(х-1)

у=1+2(х-3)

у=2+3(х-1)

у=2+х-3)

у=3+(х-2)

Запитання 6

Обчисліть кутовий коефіцієнт дотичної до кривої f(x)=x3 d njxws x0=-1.

варіанти відповідей

k=2

k=3

k=-2

k=-3

k=1

Запитання 7

Знайдіть значення f'(0,5), якщо f(x)=x2-2x+1.

варіанти відповідей

f'(0,5)=0,25

f'(0,5)=-1,75

f'(0,5)=2,25

f'(0,5)=1

f'(0,5)=-1

Запитання 8

Визначте кутовий коефіцієнт дотичної k до кривої f(x)=5x2-3x+2 у точці х0=2.

варіанти відповідей

k=23

k=17

k=13

k=16

k=7

Запитання 9

До графіка функції у=-0,5х2 проведено дотичну в точці з абсцисою х0=-3. Обчисліть тангенс кута нахилу цієї дотичної до додатного напряму очі абсцис.

варіанти відповідей

-4,5

-3

0

3

4,5

Запитання 10

Знайдіть кут між віссю Ох та дотичною до кривої у=х32-7х+6 у точці М0(2;-4).

варіанти відповідей

π/3

π/4

π/6

π/2

3π/2

Запитання 11

Знайдіть у точці М(0;0) тангенс кута нахилу дотичної до графіка функції f(x)=х3-5х

варіанти відповідей

-2

-3

-5

-8

0

Запитання 12

На рисунку зображено графік функції f(x) та дотичні до нього в точках х1 та х2. Користуючись геометричним змістом похідної, знайдіть f'(x1)+f'(x2)

варіанти відповідей

1

√3

√3/2

√3/3

1/2

Створюйте онлайн-тести
для контролю знань і залучення учнів
до активної роботи у класі та вдома

Створити тест