Презентація до уроку "Теорема Піфагора"

Про матеріал
Презентація до уроку " Теорема Піфагора" допоможе цікаво і продуктивно провести вчителю цей урок.
Зміст слайдів
Номер слайду 1

Номер слайду 2

Урок геометрії. 8 клас Математика- знаряддя для мислення, оскільки все, що є в небі, в душі, на землі можна виразити точним числом. ( Річард Фейман)

Номер слайду 3

Математична розминка 1) Знайдіть додатнє число, квадрат якого дорівнює: 64; 100; 121; 196; 225; 289. 2) Знайдіть суму квадратів чисел: 3 і 4; 8 і 6; 12 і 16; 5 і 12; 10 і 24.

Номер слайду 4

А В С D

Номер слайду 5

A B С D АВ = AD + DB; АВ = 100см; АС2 = AВ * АD; АС2 = 100 * 64; АС = 80см; ВС2 = AВ * ВD; ВС2 = 100 * 36; ВС = 60см. АВ = 100см; АС = 80см; ВС = 60см.

Номер слайду 6

1) Сторона, що лежить проти прямого кута в прямокутному трикутнику, називається… 2) Сторона, що прилягає до прямого кута в прямокутному трикутнику, називається… 3) У прямокутному трикутнику будь-який катет менший від … 4) Сума гострих кутів прямокутного трикутника дорівнює … 5) У прямокутному трикутнику проти кута 30є лежить катет, який дорівнює… 6) Прямокутний трикутник, у якого є гострий кут 45є, є…

Номер слайду 7

1) гіпотенуза 2) катет 3) гіпотенузи 4) 90є 5) половині гіпотенузи 6) рівнобедреним

Номер слайду 8

Номер слайду 9

Народився Піфагор близько 580 р. до н.е. на острові Самос, що біля Іонійського узбережжя Середземного моря, у багатій купецькій сім’ї. здобув добру освіту, навчався музики, займався гімнастикою, був навіть переможцем на Олімпійських іграх. «Причина популярності теореми Піфагора триєдина – це краса, простота і значущість». сто биків «гекатомба»

Номер слайду 10

Номер слайду 11

Номер слайду 12

Сума площ квадратів, побудованих на катетах прямокутного трикутника, дорівнює площі квадрата, побудованого на гіпотенузі. a2 + b2 = c2

Номер слайду 13

У прямокутному трикутнику квадрат гіпотенузи дорівнює сумі квадратів катетів. а b c c2 = a2 + b2

Номер слайду 14

На малюнку показано прямокутний трикутник ABC (кут ACB = 90є). Доведемо, що ACІ + BC І = ABІ. Проведемо висоту CD. A B С D

Номер слайду 15

Застосувавши, раніше вивчену теорему про метричні співвідношення у прямокутному трикутнику, отримуємо: ACІ= AD * AB BC І= DB * AB Звідси ACІ + BC І= AD*AB + DB*AB. Далі, ACІ + BC І= AB (AD + DB) = ABІ. Отже, ACІ + BC І = ABІ. A B С D

Номер слайду 16

Виміряти гіпотенузу прямокутного трикутника за відомими катетами, заповнити таблицю Катет (а) Катет (b) Гіпотенуза (с) 1 3см 4 см 2 6 см 8 см 3 5 см 12 см 4 8 см 15 см

Номер слайду 17

А С В 4 3 К N М 6 8 Знайдіть гіпотенузу 5 10 ? ?

Номер слайду 18

D E F 12 5 Y X Z 8 15 Знайдіть гіпотенузу 13 17 ? ?

Номер слайду 19

Катет (а) Катет (b) Гіпотенуза (с) 1 3см 4 см 2 6 см 8 см 3 5 см 12 см 4 8 см 15 см 10 см 13 см 5 см 17 см

Номер слайду 20

Землеміри Стародавнього Єгипту для побудови прямого кута використовували мотузку, поділену вузлами на 12 рівних частин. Кінці мотузки зв’язували. Потім мотузку натягували на землі так, щоб утворився трикутник зі сторонами 3, 4 і 5 поділок.

Номер слайду 21

Тому прямокутний трикутник із сторонами 3, 4 і 5 одиниць називають Єгипетським . 32+42=52

Номер слайду 22

Знайдіть сторону прямокутника 10 6 ? A B C 8 D а2 = с2 – b2

Номер слайду 23

Знайдіть сторону ромба O B A C D ? AC=30см BD=40см 25

Номер слайду 24

Номер слайду 25

Це цікаво! Гляньте, а ось і "Піфагорові штани на всі боки рівні". Такі вірші придумували учні середніх століть при вивченні теореми; малювали шаржі. Ось, наприклад, такі:

Номер слайду 26

У 1955 році в Греції було випущено поштову марку, що ілюструє теорему Піфагора.

Номер слайду 27

Не роби ніколи того, що не знаєш. Але вчись усьому, що потрібно знати, і тоді будеш вести спокійне життя. Піфагор

Номер слайду 28

Номер слайду 29

ppt
Додано
14 серпня 2019
Переглядів
1012
Оцінка розробки
Відгуки відсутні
Безкоштовний сертифікат
про публікацію авторської розробки
Щоб отримати, додайте розробку

Додати розробку