Областю визначення періодичної функції у=f(x) з періодом T=9 є множина дійсних чисел. На проміжку (-5;4) цю функцію задано формулою у=19-х3. Обчисліть значення f(5).
Коло радіуса 2 см описане навколо трикутника АВС з кутом ВАС=450. Знайдіть довжину сторони ВС.
Дано функцію у=соs2х - ех+ ln3.Обчисліть у ′( 0 ).
Квадратичну функцію задано формулою у=ах2 + вх + с, її графік проходить через точки А(1;-2), В(-1;3), С(0;0). Знайдіть числа а, в і с.У відповідь запишіть їх суму.
Додатне число а становить 80% від додатного числа в. Скільки відсотків число в становить від числа а?
Бічні грані трикутної піраміди взаємно перпендикулярні, а їх площі дорівнюють 8 см2, 9 см2 і 16 см2. Визначте об’єм піраміди.
Відомо,що для будь-якого х iз проміжку [а;в] для функції f виконується нерівність f '(x) < 0.
Порівняйте f(a) i f(b).
Скільки сторін у правильного многокутника, внутрішній кут якого дорівнює 1500?
Укажіть кількість цілих значень,яких набуває функція
у=6х ∕ (х2+1)
Числа log½ 8, х, log⅓ 1 ∕ 27 є першими трьома членами арифметичної прогресії (а п). Знайдіть х.
Визначте найменше ціле число, яке є розв’язком нерівності
(9х-х2 ) ∕ ((√х)2 + 4) <0.
Серед даних пар рівнянь вкажіть пару рівносильних рівнянь:
1) sinxctgx=0 і cosx=0; 2) sinxctgx=0 i sinx=0; 3) sin2x ∕ cosx=0 =0 і sin2x=0; 4) sinx= -1 і cosx=0. Вказати номер правильної відповіді
Створюйте онлайн-тести
для контролю знань і залучення учнів
до активної роботи у класі та вдома