Підготовка до ЗНО. Показникові нерівності

Додано: 8 травня 2022
Предмет: Алгебра, 11 клас
Тест виконано: 146 разів
8 запитань
Запитання 1

Розв'яжіть нерівність: 2х+1 ≥ 16.

варіанти відповідей

(-∞; 3]

[3; +∞)

(-∞; 7]

[7; +∞)

Запитання 2

Розв'яжіть нерівність: 32-x < 27.

варіанти відповідей

(-∞; -7)

[-1; +∞)

(-∞; -7]

(-1; +∞)

Запитання 3

Розв'яжіть нерівність: 4x-1 ≤ 32.

варіанти відповідей

(-∞; 3,5)

[9; +∞)

(-∞; 3,5]

(9; +∞)

Запитання 4

Розв'яжіть нерівність: 0,5x ≤ ¼.

варіанти відповідей

(-∞; 2)

[2; +∞)

(-∞; 2]

(2; +∞)

Запитання 5

Розв'яжіть нерівність: (π ∕ 4)x < (4 ∕ π)3.

варіанти відповідей

(-3; +∞)

(3; +∞)

(-∞; 3]

(-∞; -3)

(-∞; ⅓)

Запитання 6

Розв'язати нерівність: 72х+1-8·7х+1>0

варіанти відповідей

(-1;0)

(-∞;-1)∪(0;+∞)

(1∕7;1)

(1;7)

Запитання 7

Знайти суму цілих розв'язків нерівності: 187386_1649743412.jpg

варіанти відповідей

7

9

12

14

Запитання 8

Розв'яжіть нерівність: 72х+1- 8·7х+1>0

варіанти відповідей

 (−∞;1)⋃(7;+∞)

(−∞;0)⋃(1;+∞)

(1;7)

(−∞;−1)⋃(0;+∞)

Створюйте онлайн-тести
для контролю знань і залучення учнів
до активної роботи у класі та вдома

Створити тест