прогресії

Додано: 14 квітня 2021
Предмет: Алгебра, 9 клас
Тест виконано: 168 разів
15 запитань
Запитання 1

Знайдіть різницю арифметичної прогресії

9; 6; 3; 0,...

варіанти відповідей

9

6

3

- 3

Запитання 2

Знайдіть знаменник геометричної прогресії

2; 1; 0,5; 0,25 ...

варіанти відповідей

4

2

0,5

- 0,5

Запитання 3

Знайдіть суму перших чотирьох членів арифметичної прогресії

а1= -3, d=7

варіанти відповідей

54

30

42

63

Запитання 4

Знайдіть суму перших п'яти членів геометричної прогресії

b1=½, q=4

варіанти відповідей

992

42,5

170,5

62,5

Запитання 5

Дано арифметичну прогресію.

Знайдіть а4, якщо а3=18, а5=22

варіанти відповідей

1

40

20

23

Запитання 6

Дано геометричну прогресію.

Знайдіть b4, якщо b3=3, b5=27

варіанти відповідей

9

- 9

± 81

± 9

Запитання 7

Знайдіть перший член та різницю арифметичної прогресії (аn), якщо а3= -80, а8= -25

варіанти відповідей

а1=58

d= -11

a1=11

d= -102

a1= -102

d=11

a1= -102

d= -11

Запитання 8

При якому значенні х значення виразів х+6, х+2 і 3х-4 будуть послідовними членами геометричної прогресії.

Знайдіть члени цієї прогресії

варіанти відповідей

-7; 2; - 4/7

-1; -5; -25

-1; -5; -25 та 2; 4; 8

-1; -5; -25 та 8; 4; 2

Запитання 9

У геометричній прогресії (bn)

b4=15, b6=60, q<0.

Знайдіть S6

варіанти відповідей

37,375

38,375

-39,375

39 3/8

Запитання 10

Знайдіть перший від'ємний член арифметичної прогресії 2; 1,8; 1,6; ...

варіанти відповідей

- 0,1

- 0,2

- 0,3

-.0,4

Запитання 11

Знайдіть перший член та різницю арифметичної прогресії (аn), якщо

а3 + а5 = -2 і а7 + а10 = 4

варіанти відповідей

а1 = 1; d = - ⅔

а1 = 3,5; d = -1,5

а1 = - 1; d = ⅔

а1 = - 5,5; d = 1,5

Запитання 12

При якому значенні у значення виразів 3у +1; 4у - 1; у2 + у і у2 + у + 1 будуть рослідовними членами арифметичної прогресії? Знайдіть члени цієх прогресії.

варіанти відповідей

10; 11; 12; 13

8; 9: 10; 11

8; 10 12; 14

10; 12; 14; 16

Запитання 13

Для будь-якого натурального значення n суму n перших членів деякої арифметичної прогресії можна обчислити за формулою Sn = 5n2 - 3n. Знайдіть різницю цієї прогресії

варіанти відповідей

12

10

16

14

Запитання 14

П'ятнадцятий член арифметичной прогресії дорівнює 21. Знайдіть суму двадцяти дев'яти перших членів прогресії

варіанти відповідей

609

619

599

не можна визначити

Запитання 15

Арифметичну прогресію (аn) задано формулою n-го члена аn = - 2n + 1. Знайдіть суму тридцяти восьми перших членів прогресії.

варіанти відповідей

- 1368

- 1444

- 1406

- 1404

Створюйте онлайн-тести
для контролю знань і залучення учнів
до активної роботи у класі та вдома

Створити тест