Сколярний добуток векторів

Додано: 2 квітня 2020
Предмет: Геометрія, 9 клас
Тест виконано: 239 разів
9 запитань
Запитання 1

Скалярний добуток векторів обчислюється за формулою

варіанти відповідей

b̅⋅c̅=∣b̅∣⋅∣c̅∣⋅cosα

b̅⋅c̅=√∣b̅∣⋅∣c̅∣⋅

b̅⋅c̅=x1⋅x2+y1⋅y2

b̅⋅c̅=∣b̅∣⋅∣c̅∣sinα

Запитання 2

Якщо b̅⋅c̅=0, то вектори

варіанти відповідей

рівні

перпендикулярні

колінеарні

протилежно напрямлені

Запитання 3

Якщо b̅⋅c̅=∣b̅∣⋅∣c̅∣, то вектори

варіанти відповідей

колінеарні

перпендикулярні

рівні

визначити неможливо

Запитання 4

Якщо вектори перпендикулярні, то

варіанти відповідей

b̅⋅c̅=1

b̅⋅c̅=∣b̅∣⋅∣c̅∣

b̅⋅c̅=cosα

b̅⋅c̅=∣0

Запитання 5

Знайти скалярний добуток векторів, якщо b̅(2;-1), c̅(-1;2).

варіанти відповідей

0

4

-4

3

Запитання 6

Знайти скалярний добуток векторів, якщо ∣b̅∣=2; ∣c̅∣=1, а кут між ними 600

варіанти відповідей

2

4

12

1

Запитання 7

Скалярний добуток векторів дорівнює 3, ∣b̅∣=2; ∣c̅∣=3. Знайти кут між ними .

варіанти відповідей

30⁰

45⁰

60⁰

90⁰

Запитання 8

У прямокутній системі координат на площині задано вектори 

а̅ (−1;1) та b̅(−1;2).

Визначте значення m, за якого вектори  a̅+mb̅ та b̅  перпендикулярні.

варіанти відповідей

0.6

- 0,6

0,8

-0,4

Запитання 9

У прямокутній системі координат на площині задано паралелограм ABCD,

cos A=0,44. Визначте довжину діагоналі BD паралелограма, якщо скалярний добуток векторів AB̅(6;−8)  і  AD̅ дорівнює 88.

варіанти відповідей

12

14

16

18

Створюйте онлайн-тести
для контролю знань і залучення учнів
до активної роботи у класі та вдома

Створити тест