Індивідуальний навчальний план
з геометрії
учня/учениці 9 класу
___________________________
який/яка здобуває освіту за сімейною формою навчання
( план складено відповідно програми затвердженої Наказом Міністерства освіти і науки України від 07.06.2017 № 804)
Очікувані результати навчально-пізнавальної діяльності учнів |
Зміст навчального матеріалу |
Дата/ час проведення консультацій, видів контролю |
Тема 1. КООРДИНАТИ НА ПЛОЩИНІ |
|
|
Учень/учениця: наводить приклади співвідношень, указаних у змісті; пояснює: · що таке синус, косинус, тангенс кутів від 0° до 180°; рівняння фігури; · як можна задати на координатній площині: пряму; коло;
формулює теореми про: записує та пояснює: · формули координат середини відрізка, відстані між двома точками; · рівняння кола, прямої; зображує та знаходить на малюнках геометричну фігуру (пряму, коло) за її рівнянням у заданій системі координат; обчислює: · координати середини відрізка; · відстань між двома точками, заданих своїми координатами; доводить теорему про: відстань між двома точками; координати середини відрізка; застосовує вивчені формули й рівняння фігур до розв’язування задач |
Синус, косинус, тангенс кутів від 0° до 180°. Тотожності: sin (180° – α) = sin α; cos (180° – α) = – cos α.
Координати середини відрізка.
Відстань між двома точками із заданими координатами.
Рівняння кола і прямої
|
12.09 Консультація
20.10 Контрольна робота. |
Тема 2. ВЕКТОРИ НА ПЛОЩИНІ |
|
|
Учень/учениця: наводить приклади: рівних, протилежних, колінеарних векторів; пояснює: · що таке: вектор; модуль і напрям вектора; одиничний вектор; нуль-вектор; колінеарні вектори; протилежні вектори; координати вектора; сума і різниця векторів; добуток вектора на число; · як задати вектор; · як відкласти вектор від заданої точки; · за якими правилами знаходять: суму векторів; добуток вектора на число; формулює: · означення: рівних векторів; скалярного добутку векторів; · властивості: дій над векторами; зображує і знаходить на малюнках: вектор; вектор, рівний або протилежний даному, колінеарний із даним, у т. ч. за його координатами; вектор, що дорівнює сумі (різниці) векторів, добутку вектора на число; обчислює: · координати вектора, суми (різниці) векторів, добутку вектора на число; · довжину вектора, кут між двома векторами; обґрунтовує: рівність, колінеарність векторів; застосовує вивчені означення й властивості до розв’язування задач |
Вектор. Модуль і напрям вектора. Рівність векторів.
Координати вектора. Додавання і віднімання векторів. Множення вектора на число. Колінеарні вектори. Скалярний добуток векторів
|
15.11 Консультація
16.12 Контрольна робота |
Тема 3. РОЗВ’ЯЗУВАННЯ ТРИКУТНИКІВ |
|
|
Учень/учениця: пояснює, що означає «розв’язати трикутник»; формулює теорему: косинусів; синусів; записує та пояснює формули площі трикутника (Герона; за двома сторонами і кутом між ними); зображує та знаходить на малюнках елементи трикутника, необхідні для обчислення його невідомих елементів; обчислює: довжини невідомих сторін та градусні міри невідомих кутів трикутника; площі трикутників; застосовує вивчені формули й властивості до розв’язування задач |
Теореми косинусів і синусів.
Формули для знаходження площі трикутника |
01.02 Консультація
13.03 Контрольна робота |
Тема 4. Правильні многокутники. Довжина кола. Площа круга |
|
|
Учень/учениця: наводить приклади геометричних фігур, указаних у змісті; пояснює, що таке: дуга кола; довжина кола; площа круга; правильний многокутник (трикутник, чотирикутник, шестикутник), вписаний у коло та описаний навколо кола; співвідносить з об'єктами навколишньої дійсності вказані у змісті фігури; обчислює: радіус кола за стороною вписаного в нього правильного многокутника (трикутника, чотирикутника, шестикутника) і навпаки; радіус кола за стороною описаного навколо нього правильного многокутника (трикутника, чотирикутника, шестикутника) і навпаки; довжини кола і дуги кола; площі круга, сектора будує; правильний трикутник, чотирикутник, шестикутник; застосовує вивчені означення, властивості та формули до розв’язування задач |
Правильний многокутник, його види та властивості.
Правильний многокутник, вписаний у коло та описаний навколо кола.
Довжина кола. Довжина дуги кола.
Площа круга та його частин |
2.04 Консультація |
Тема 5. ГЕОМЕТРИЧНІ ПЕРЕМІЩЕННЯ |
|
|
Учень/учениця: наводить приклади:· фігур та їх образів при геометричних переміщеннях, указаних у змісті; фігур, які мають центр симетрії, вісь симетрії; рівних фігур; пояснює, що таке: переміщення (рух); образ фігури при геометричному переміщенні; фігура, симетрична даній відносно точки (прямої); симетрія відносно точки (прямої); паралельне перенесення; поворот; рівність фігур; формулює: · означення: рівних фігур; · властивості: переміщення; симетрії відносно точки (прямої); паралельного перенесення; повороту; зображує і знаходить на малюнках фігури, в які переходять дані фігури при різних видах переміщень; обґрунтовує: симетричність двох фігур відносно точки (прямої); наявність у фігури центра (осі) симетрії; рівність фігур із застосуванням переміщень; застосовує вивчені означення й властивості до розв’язування задач |
Переміщення (рух) та його властивості.
Симетрія відносно точки і прямої, поворот, паралельне перенесення.
Рівність фігур
|
20.05 Контрольна робота |
Розв’язує задачі на: знаходження невідомих елементів реальних об’єктів; знаходження площ реальних об’єктів, покриття площини правильними многокутниками тощо |
|