Конспект уроку з теми: "Планетные системы других звезд. Эволюция звезд. Нейтронные звезды. Черные дыры"

Про матеріал

Конспект уроку для 11 класу по астрономії з теми: "Планетные системы других звезд. Эволюция звезд. Нейтронные звезды. Черные дыры". Конспект розроблено та надруковано російською мовою.

Перегляд файлу

11 класс.   АСТРОНОМИЯ.

 

Тема урока: Планетные системы других звезд. Эволюция звезд. Нейтронные звезды. Черные дыры.

 

Цель урока: дать общие представления о планетных системах других звезд; рассмотреть эволюцию звезд; усвоить понятия нейтронных звезд и черных дыр; развивать умения делать выводы; воспитывать у учащихся интерес к астрономии; формировать научное мировоззрение.

Оборудование: ноутбук, экран, презентация Power Point, видеоролик,карточки-«Продолжите предложение», карточки-бюро справок.

 

ХОД УРОКА

 

І. Организационный момент. Приветствие. Объявление темы урока.

І І. Актуализация опорних знаний.

Карточки. ( с последующей взаимопроверкой)

Продолжите предложение. (5 мин.)

1. Красные гиганты и сверхгиганты — это звёзды…

А. …в которых ядерные реакции никогда не могли компенсировать потери энергии на излучение.

2. Наиболее многочисленный класс звёзд составляют звёзды главной последовательности,

Б. …созвездий: 12 зодиакальных созвездий и созвездие Змееносца

3. Двойная звезда, или двойная система 

 

В. …с довольно низкой эффективной температурой (3000—5000 К), однако с огромной светимостью.

4. Коричневые карлики — это тип звёзд,

Г. …к такому типу звёзд принадлежит и наше Солнце. 

5. Классификации звёзд начали строить сразу после того, как начали

Д. …хоть один раз менялся блеск.

6. Новая звезда 

Э. …две гравитационно-связанные звезды, обращающиеся по замкнутым орбитам вокруг общего центра масс.

7. Звёздное скопление — группа звёзд,

Е. …является Солнце.

8. Парсек (пк, pc) - расстояние, на котором звезда при ее наблюдении с

Ж. …именованным участком небесной сферы.

9. Переменная звезда — это звезда, у которой за всю историю наблюдения

З. …тип катаклизмических переменных. 

10. Единственной звездой, которая не принадлежит ни к одному из созвездий,

К. …получать их спектры.

11. Все звёзды, кроме одной, могут быть связаны с каким-либо созвездием,

Л. …противоположных точек диаметра земной орбиты изменяет свое видимое положение (параллакс) на 1 угловую секунду

12. В течение года Солнце проходит по эклиптике через 1

М. …имеющих общее происхождение, положение в пространстве и направление движения. 

 

І І І. Объявление темы урока. Планетные системы других звезд. Эволюция звезд. Нейтронные звезды. Черные дыры.

Объяснение нового материала

Учитель.

Поиск других планет и жизни вне Земли, желательно разумной и подобной нашей, - эти всеобъемлющие задачи явно или неявно лежат в основе развития астрономической науки и научного знания со времен античных философов.

Попытки человека понять окружающий мир всегда начинались со звездного неба над головой, и все, что ученые знают (а правильнее сказать - предполагают) о возникновении жизни, связано только с планетой Земля. Сегодня, когда накопленные столетиями знания содержат ответы на многие вопросы, когда новые астрофизические методы позволяют исследовать не только горизонт Вселенной, но и, возможно, даже горизонт времени, не менее важным (и даже сенсационным) научным событием стало открытие планетных систем у других звезд. Почти сто лет казалось, что это открытие вот-вот произойдет, публиковались многочисленные исследования и проводились специальные конференции, но состоялось оно только в 1995 году. Поразительно, что открытию внесолнечных планет мешали, как это будет видно из дальнейшего, именно те сведения, которые ученые получили в ходе исследования нашей Солнечной системы и которые считались исходными также для поиска других планетных систем.

У поиска внесолнечных планет (экзопланет, как их еще называют) несколько аспектов: это новые фундаментальные знания о происхождении мира, в котором мы живем; новые представления об эволюции нашей собственной планеты, природа которой далеко не застыла в своем развитии и совсем не так однозначна и устойчива, как это когда-то представлялось; наконец, это поиск миров с теми самыми таинственными условиями, в которых когда-то возникла (в единственной известной нам амино-нуклеино-кислотной форме) и эволюционировала жизнь на нашей планете.

Сложность механизмов образования и эволюции планет такова, что одинаковые исходные условия вовсе не обязательно ведут к идентичным результатам. Подобно тому как нельзя предсказать, куда покатится камень по разветвленной канавке или на какую сторону острова течение вынесет плот, природа предлагает большой набор различных путей для развития изначально мало различающихся планетных тел. Хорошо известный пример - планета Венера, совершенно непохожая на Землю (хотя удалось узнать это только в наши дни). Что же касается других планетных систем, то их разнообразие проявляется даже в самой их структуре.

В ХХ веке отправной точкой в поиске других планетных систем считалась хорошо изученная структура Солнечной системы.

Поиски других планетных систем в ХХ веке опирались на изложенные представления о Солнечной системе. Ученые рассчитывали, как она должна выглядеть с расстояния, скажем, 5 пк, соответствующего удалению ближайших звезд. Получалось, что случай почти безнадежный - свет звезды замаскирует присутствие планет. Можно попытаться обнаружить только Юпитер, да и то при очень больших ухищрениях. Так как орбитальный период Юпитера составляет 12 земных лет, а Сатурна почти 30, план поисков должен был предусматривать постоянные наблюдения выбранных звезд в течение 10-30 лет…

Ученик 1. Поиски планет у других звезд в хх веке

Первой открытой экзопланетой стала планета у звезды 51Peg в созвездии Пегаса. Фактически планета у звезды 51Peg была обнаружена в 1994 году, но официально объявили об этом лишь осенью следующего года. Сообщения об открытии планет появлялись и раньше, в течение почти всей второй половины ХХ века, но неизменно опровергались. Справедливости ради начать следует с классической (и самой долгой) истории поиска гипотетических планет у звезды Барнарда ("летящей"), открытой в 1916 году.

Звезда Барнарда - четвертая из ближайших к Солнцу звезд. В астрофизике звезды классифицируют по типам, в зависимости, главным образом, от их температуры. Солнце - звезда класса G2, с температурой излучения около 6000 К. Звезда Барнарда - сравнительно холодный и маломассивный красный карлик позднего класса M5V. Свою звезду в 1916 году он открыл случайно, благодаря главной ее особенности - большому видимому движению по небу, около 10 угловых секунд в год. Позже другой исследователь из США, П. Ван де Камп, заинтересовался звездой Барнарда и не прекращал ее исследования более полувека. Движение звезды он начал изучать в 1938 году, используя астрометрический метод (точное определение координат объекта и его положения относительно других звезд), и, накапливая наблюдательный материал, настойчиво продолжал эту работу до 1980-х годов.

Из данных исследования Ван де Кампа следовало, что возмущения в движении звезды вызывает планета с массой Юпитера (или больше) и примерно с его же орбитой. В дальнейшем де Камп говорил уже о двух планетах, с периодами 12 и 26 лет. Популярность исследований де Кампа росла, чему способствовало и то, что он умел хорошо владеть аудиторией. Однако некоторые скептики относились к его данным недоверчиво.

Н. Вегман, один из близких коллег де Кампа, провел независимые измерения, колебаний в положении звезды Барнарда не обнаружил, но публиковать свои результаты не стал. В 1971 году Д. Гейтвуду, который тогда был аспирантом Аллеганской обсерватории (США), предложили исследовать движения звезды Барнарда в качестве диссертационной темы. Компьютеры тогда только входили в астрономическую практику, но Гейтвуду удалось разработать новый астрометрический прибор - многоканальный компьютеризированный фотометр, который в значительной мере исключал возможные ошибки измерений. Для надежности измерения проводились независимо в двух обсерваториях. Когда накопилось достаточное количество снимков, запустили программу их обработки.

Де Камп до конца своих дней настаивал на существовании планет у звезды Барнарда. Он умер в 1995 году, в год, странно совпавший с открытием первой подлинной экзопланеты у звезды 51Peg.

Наряду с астрометрией исследователи рассматривали и другие возможные методы поиска планет. В обзорах 80-х годов ХХ столетия приводились вполне обоснованные оценки возможностей методов лучевых скоростей (о нем ниже) и наблюдений внесолнечных планетных тел в оптическом и в инфракрасном диапазонах.

Метод прямой фотометрической регистрации экзопланет по отраженному ими свету в 1970 - 1990-х годах обсуждали многие исследователи. Принималось, что планетная система подобна Солнечной, наблюдаемой с расстояния 5 пк. Эффективность метода прямой регистрации (в оптическом диапазоне) все-таки была доказана наблюдениями планеты у так называемого коричневого карлика 2M1207.

Ученик 2. Планетная система у нейтронной звезды PSR B1257+12

Вопреки ожиданиям первая внесолнечная планетная система была обнаружена не у нормальной звезды, а у пульсара (нейтронной звезды). В 1991 году радиотелескоп Аресибо (Пуэрто-Рико, США) был остановлен на частичный ремонт. 300-метровая параболическая антенна Аресибо неподвижна, поэтому основной режим работы этого радиотелескопа - пассажный, то есть излучение радиоисточников регистрируется, когда благодаря вращению Земли они проходят через его неподвижную диаграмму направленности. А. Вольцшан использовал остановку плановых работ на радиотелескопе для поиска пульсаров, расположенных высоко над плоскостью Галактики. Вскоре ему удалось обнаружить слабый пульсар PSR B1257+12, импульсы которого повторяются каждые 6,2 миллисекунды. Пульсар далекий, он находится на расстоянии 1300 световых лет. (Пульсары - это быстровращающиеся нейтронные звезды с двумя узкими лучами, как у прожектора маяка. Они удобны для исследования межзвездного пространства, и существуют специальные математические модели, которые позволяют получить сведения о межзвездной среде именно путем обработки данных об излучении пульсара.) Но с обработкой данных PSR B1257+12 возникли проблемы. Вскоре, чтобы подтвердить наблюдения Вольцшана, Д. Фрейл в радиоастрономической обсерватории Сокорро в Нью-Мексико провел независимые измерения, но получил такие же результаты.

Немного раньше А. Лин выступил в печати с сообщением об открытии планеты у другого пульсара, PSR B1829-10. Его статья в журнале "Nature" появилась 25 июля 1991 года вместе с вынесенным на обложку ярким заголовком: "Первая планета вне нашей Солнечной системы". У Лина тоже были проблемы с обработкой данных, но, когда он включил в модель пульсара периодическое воздействие, создаваемое гипотетической массивной планетой, задача была решена. Период планеты, однако, оказался странно равным точно половине земного года.

В 1993 году Вольцшан объявил, что у пульсара PSR B1257+12 оказались три планеты, которые удалены от него в том же отношении 0,39/0,72/1, что и расстояния от Солнца Меркурия, Венеры и Земли. Массы планет довольно значительны: 0,2, 4,3 и 3,6 земной, а периоды обращения составляют 25, 67 и 98 суток (в дальнейшем заключение о существовании первой планеты оспаривалось).

По-видимому, планеты у пульсара представляют собой весьма экзотические образования. Они подвержены действию интенсивных потоков электронов, позитронов и гамма-излучения, периодически падающих на планеты с указанным периодом (то есть с частотой 160 Гц).

После первых же публикаций возник вопрос: откуда там взялись планеты? Нейтронная звезда - продукт взрыва обычной звезды в конце ее жизни. Предположение, что планеты у звезды когда-то существовали и сохранились после ее взрыва как сверхновой, не проходит по нескольким причинам. После взрыва сверхновой планеты должны были бы оказаться внутри газовых оболочек звезды. Но даже если бы они и сохранились, пусть в обожженном виде, удержаться на своих орбитах они бы не смогли: после взрыва масса звезды и ее тяготение резко уменьшаются, в результате сохраняющегося момента орбиты планет катастрофически увеличиваются и планеты покидают звезду.

Возможное объяснение природы планет пульсара PSR B1257+12 связано именно с его быстрым вращением, хотя он должен быть достаточно старым (и медленным). Предполагается, что рядом с ним существовала другая звезда, вещество которой постепенно перетекало к пульсару, ускоряя его вращение, а остатки могли конденсироваться в планеты. Ныне такой звезды нет.

В 1999 году подтвердилось наличие планеты с массой порядка пяти масс Юпитера у еще одного пульсара, PSR B1620-26. Среди возможных кандидатов на наличие планет есть и другие пульсары.

ПРЕЗЕНТАЦИЯ. НЕЙТРОННЫЕ ЗВЕЗДЫ.

Учитель. Нейтронная звезда — астрономический объект, являющийся одним из конечных продуктов эволюции звёзд, состоящий, в основном, из нейтронной сердцевины, покрытой сравнительно тонкой (1 км) корой вещества в виде тяжёлых атомных ядер и электронов. Массы нейтронных звёзд сравнимы с массой Солнца, но типичный радиус составляет лишь 10—20 километров. Поэтому средняя плотность вещества такой звезды в несколько раз превышает плотность атомного ядра (которая для тяжёлых ядер составляет в среднем 2,8·1017 кг/м³). Многие нейтронные звёзды обладают чрезвычайно высокой скоростью вращения, до тысячи оборотов в секунду. Считается, что нейтронные звёзды рождаются во время вспышек сверхновых звёзд.

Ученик 3. История открытия планет у солнцеподобных звезд

Число открытых на 2006 год экзопланет привышает двести. Практически все они найдены одним и тем же очень сложным методом, который, не вникая в подробности, все же можно объяснить достаточно просто.

Все звезды участвуют во вращении Галактики. Но наряду с этим каждая звезда имеет собственные, случайные скорости, которые относительно Солнца могут достигать нескольких десятков километров в секунду. Если звезда приближается к наблюдателю или удаляется, возникает эффект Доплера, когда световые волны как бы сжимаются или растягиваются вдоль луча, смещая весь спектр звезды в синюю или красную сторону соответственно. Измерения смещения линий в спектре позволяют определить лучевые (радиальные) скорости звезд. Разумеется, составляющую скорости, которая вдоль луча не направлена, таким методом измерить нельзя.

Первый главный метод поиска – спектральный, второй главный метод поиска – астрометрический. Здесь достигнута точность выше 1 микросекунды дуги, причем есть перспективы улучшения метода. Теоретически существует не менее пяти физических методов поиска.

В Сан-Францисском университете в США группа Д. Марси начала планомерный поиск планет еще в 1987 году и к 1995 году уже имела в руках многолетний наблюдательный материал.

Однако накопленные материалы требовали нескольких лет компьютерной обработки. Поскольку Марси и Батлер с коллегами знали, что период Юпитера составляет 12 лет, они, похоже, особенно не торопились. Но все же, чтобы ускорить работу, число регулярно наблюдавшихся звезд было сокращено со 120 до 25. Среди отброшенных была и звезда 51Peg, потому что в Йельском каталоге ярких звезд она значилась как нестабильный субгигант и относилась к особому виду звезд. В действительности 51Peg - спокойная звезда солнечного типа, спектральный класс G2.5. Эта ошибка в каталоге для Марси и Батлера стала роковой.

Несколько других групп исследователей тоже накапливали материал, исходя из того, что обнаружима планета с массой не менее Юпитера и с периодом 12 лет.

Метод швейцарских исследователей М. Майора и Д. Квелоца позволял получить результат сразу. Их техника была отлажена, однако уже через несколько месяцев после начала работы возникли проблемы с этой самой 51Peg. Всего за несколько ночей значительная часть лучевой скорости звезды меняла знак, изменяясь на 60 м/с. М. Майор предположил, что причина может быть в неисправности спектрометра. Но уже в декабре 1994 года в руках у Майора и Квелоца оказалась синусоидальная кривая изменения кеплеровской составляющей лучевой скорости 51Peg с периодом (годом планеты) всего 4,2 дня. Исследователи были в затруднении. По массе такая планета должна быть очень большой, чем-то вроде Юпитера, но находится на орбите в восемь раз ближе к звезде, чем даже Меркурий к Солнцу (около 1/20 а.е.), и с периодом 1/1000 периода Юпитера. В существование таких планет никто тогда не мог поверить.

В дальнейшем именно с утверждением, что у 51Peg наблюдаются пульсации звезды, а не экзопланета, выступил Д. Грей. Его критика не подтвердилась, так как периоды собственных колебаний звезд значительно короче, а главное - не могут иметь столь высокой стабильности.

Осенью 1995 года на конференции в Италии Майор и Квелоц доложили о своем открытии, о необычной близости планеты к звезде и ее большой массе. Планеты стали называть по имени звезды с добавлением буквы b для первой найденной планеты, c для второй и т. д. Как уже говорилось, МЛС-измерения фактически дают оценку не самой массы М, а величину Msini. Насколько оценка массы экзопланеты отличается от ее реальной массы, зависит от угла i, который образует нормаль к плоскости ее орбиты с направлением на наблюдателя; для 51Peg b масса составляет, скорее всего, половину массы Юпитера. Из-за близости к звезде температура планеты очень высока и превышает, вероятно, 1000 К (в дальнейшем этот тип планет получил название "горячий юпитер"). Работа была представлена в журнал "Nature". Открытие вызвало сенсацию, причем критики тут же отметили, что такая планета по целому ряду причин просто не могла образоваться.

Что же касается Д. Марси и П. Батлера, вести с конференции застали их врасплох. У них шли наблюдения, и последующие четыре ночи они посвятили столь опрометчиво оставленной ими 51Peg. Вскоре сомнений не осталось: швейцарцы правы. Огорчению Марси и Батлера не было границ - столько лет работы, а первенство досталось другим. Но вскоре они уже оказались в центре внимания американской прессы и телевидения. Появились неожиданные коллеги, которые, по их словам, тоже обнаружили планеты у 51Peg, даже целых две, но не смогли объяснить, как они это сделали. Постепенно швейцарцы вообще как-то отошли на второй план, лишь в конце газетных и других публикаций упоминалось, что швейцарские исследователи тоже обнаружили экзопланету.

Но Майор и Квелоц были вынуждены молчать. Хотя публикация в "Nature" и закрепляет приоритет, но правила редакции запрещают разглашать содержание находящейся в печати статьи. На все обращения журналистов они мрачно отмалчивались, а лавры открытия доставались другим. "Это была полностью вина "Nature", - говорил Квелоц. - Мы были в очень трудном положении, поскольку хотели говорить, хотели рассказать о том, что сделали, но не могли из-за запрета "Nature". Была масса звонков от журналистов, но все что мы могли сказать, это - извините, не можем ответить. Может быть, спросите кого-либо еще".

Марси и Батлеру срочно предоставили время на мощных компьютерах. За последующие полгода они обработали накопленные за восемь лет материалы о 107 звездах. Им сразу же удалось выделить шесть звезд-кандидатов, причем одну из них, в созвездии Лебедя (16Cyg B), одновременно нашла группа У. Кохрана (США). Экзопланета у 16Cyg B оказалась одной из первых среди планет с очень большим эксцентриситетом орбиты, больше подходящим комете. Вместе с тем в числе новых экзопланет оказалась также t Воо b, орбита которой имеет ничтожный эксцентриситет. Ее период ("год") 3,3 дня, а вероятная масса - примерно четыре массы Юпитера. К родительской звезде она еще ближе, чем экзопланета 51Peg b. Забегая вперед, можно сказать, что дальнейшее совершенствование метода лучевых скоростей и его предельные возможности определяются главным образом тем, насколько нестабильны фотосферы звезд солнечного типа. В типичном благоприятном для МЛС случае неспокойствия фотосферы составляют примерно 3 м/с, а предельные возможности самого метода ныне близки к 1,5 м/с.

Учитель. В дальнейшем темпы открытий экзопланет нарастали. Появились новые коллективы исследователей, а среди экзопланет выделились несколько типичных групп. Уже на начало 2000 года было исследовано около 500 звезд солнечного типа, причем удалось обнаружить 32 экзопланеты. Треть среди них - объекты типа "горячий юпитер". К середине этого года общее число открытых экзопланет превысило 200. Отдельный их класс - это так называемые коричневые, или, правильнее, инфракрасные карлики, типы которых мы рассмотрели на прошлом уроке.

Хотя по человеческой шкале времени звезды и кажутся вечными, они, подобно всему сущему в природе, рождаются, живут и умирают. Согласно общепринятой гипотезе газопылевого облака звезда зарождается в результате гравитационного сжатия межзвездного газопылевого облака. По мере уплотнения такого облака сначала образуется протозвезда, температура в ее центре неуклонно растет, пока не достигает предела, необходимого для того, чтобы скорость теплового движения частиц превысила порог, после которого протоны способны преодолеть макроскопические силы взаимного электростатического отталкивания и вступить в реакцию термоядерного синтеза.

Чёрные дыры

У звёзд более массивных, чем предшественники нейтронных звёзд, ядра испытывают полный гравитационный коллапс. По мере сжатия такого объекта сила тяжести на его поверхности возрастает настолько, что никакие частицы и даже свет не могут её покинуть, — объект становится невидимым. В его окрестности существенно изменяются свойства пространства-времени, что описывается общей теорией относительности. Такие объекты называют чёрными дырами.

Звёздная эволюция в астрономии — последовательность изменений, которым звезда подвергается в течение её жизни, то есть на протяжении сотен тысяч, миллионов или миллиардов лет, пока она излучает свет и тепло.

ВИДЕОРОЛИК. ЭВОЛЮЦИЯ ЗВЕЗДЫ.

 VI. Закрепление материала.(бюро справок)

V. Подведение итогов. Домашнее задание.

 

Бюро справок

                    Чёрные дыры

У звёзд более массивных, чем предшественники нейтронных звёзд, ядра испытывают полный гравитационный коллапс. По мере сжатия такого объекта сила тяжести на его поверхности возрастает настолько, что никакие частицы и даже свет не могут её покинуть, — объект становится невидимым. В его окрестности существенно изменяются свойства пространства-времени, что описывается общей теорией относительности. Такие объекты называют чёрными дырами.

                    Нейтронные звёзды

Нейтронная звезда — астрономический объект, являющийся одним из конечных продуктов эволюции звёзд, состоящий, в основном, из нейтронной сердцевины, покрытой сравнительно тонкой (1 км) корой вещества в виде тяжёлых атомных ядер и электронов. Массы нейтронных звёзд сравнимы с массой Солнца, но типичный радиус составляет лишь 10—20 километров. Поэтому средняя плотность вещества такой звезды в несколько раз превышает плотность атомного ядра (которая для тяжёлых ядер составляет в среднем 2,8·1017 кг/м³). Многие нейтронные звёзды обладают чрезвычайно высокой скоростью вращения, до тысячи оборотов в секунду. Считается, что нейтронные звёзды рождаются во время вспышек сверхновых звёзд.

  •                  Протозвезда

Протозвёзды — звёзды на завершающем этапе своего формирования, вплоть до момента загорания термоядерных реакций в ядре, после которого сжатие протозвезды прекращается и она становится звездой главной последовательности.

  •                  Сверхновая звезда 

Сверхновая звезда или вспышка сверхновой — феномен, в ходе которого звезда резко меняет свою яркость на 4—8 порядков (на десяток звёздных величин) с последующим сравнительно медленным затуханием вспышки.

  •                  Экзопланеты

Экзопланеты – это планеты, расположенные за пределами Солнечной системы. Начиная с первого открытия экзопланеты в 1992 году, астрономы обнаружили уже более 1000 таких планет в планетных системах вокруг галактики Млечный Путь.

  •                  Пульсар

Пульса́р  космический источник радио- (радиопульсар), оптического (оптический пульсар), рентгеновского (рентгеновский пульсар) и/или гамма- (гамма-пульсар) излучений, приходящих на Землю в видепериодических всплесков (импульсов). Согласно доминирующей астрофизической модели, пульсары представляют собой вращающиеся нейтронные звёзды с магнитным полем, которое наклонено к оси вращения, что вызывает модуляцию приходящего на Землю излучения.

docx
До підручника
Астрономія (рівень стандарту) 11 клас (Головко М.В., Коваль В.С., Крячко І.П.)
Додано
8 січня 2019
Переглядів
1704
Оцінка розробки
Відгуки відсутні
Безкоштовний сертифікат
про публікацію авторської розробки
Щоб отримати, додайте розробку

Додати розробку