В зв'язку з карантинними заходами, роботу з алгебри в 11 класі необхідно розпочати із завершення теми "Похідна та її застосування". Контрольна, що пропонується, дає можливість повторити (вивчити) матеріал першої частини теми, тобто визначення, правила знаходження і геометричний зміст похідної
Контрольна робота з алгебри: «Похідна»
І варіант |
ІІ варіант |
1. Знайти похідну: |
|
|
|
2. Обчислити значення похідної у вказаній точці: |
|
, якщо |
, якщо |
3. Знайти похідну: |
|
|
|
4. Скласти рівняння дотичної до графіка функції у точці з абсцисою : |
|
|
|
5. Скласти рівняння дотичної до графіка функції, яка паралельна вказаній прямій: |
|
; |
; |
ІІІ варіант |
ІV варіант |
1. Знайти похідну: |
|
|
|
2. Обчислити значення похідної у вказаній точці: |
|
, якщо |
, якщо |
3. Знайти похідну: |
|
|
|
4. Скласти рівняння дотичної до графіка функції у точці з абсцисою : |
|
|
|
5. На кривій знайти точку, у якій дотична паралельна прямій |
5. У яких точках дотичні до кривої паралельні прямій |
Завдання високого рівня. |
|
І та ІІІ варіанти |
ІІ та IV варіанти |
1. До кривої з точки проведені дотичні. Знайти відстань між точками дотику. |
|
|
|
2. Написати рівняння дотичної до графіка функції , яка разом з осями координат утворює рівнобедрений трикутник. Обчислити площу цього трикутника. |
|
|
|
Примітка: правильне виконання 5-ти завдань кожного варіанту оцінюється оцінкою 8. Кожне завдання високого рівня оцінюється 2-ма балами.
Контрольна робота з алгебри: «Похідна»
V варіант |
VI варіант |
1. Знайти похідну: |
|
|
|
2. Обчислити значення похідної у вказаній точці: |
|
, якщо |
, якщо |
3. Знайти похідну: |
|
|
|
4. Знайти ординату точки дотику, якщо: |
|
Дотична до кривої утворює з віссю кут . |
Дотична до кривої утворює з віссю кут . |
5. Скласти рівняння дотичної до графіка функції, яка перпендикулярна вказаній прямій: |
|
; |
; |
VII варіант |
VIII варіант |
1. Обчислити границю: |
|
|
|
2. Обчислити значення похідної у вказаній точці: |
|
, якщо |
, якщо |
3. Знайти похідну: |
|
|
|
4. Знайти ординату точки дотику, якщо: |
|
Дотична до кривої має вигляд |
Дотична до кривої має вигляд . |
5. Скласти рівняння дотичної до графіка функції, яка перпендикулярна вказаній прямій: |
|
; |
; |
Завдання високого рівня. |
|
Vта VII варіанти |
VI та VIII варіанти |
1. До кривої з точки проведені дотичні. Знайти відстань між точками дотику. |
|
|
|
2. Написати рівняння дотичної до графіка функції , яка разом з осями координат утворює рівнобедрений трикутник. Обчислити площу цього трикутника. |
|
|
|
Примітка: правильне виконання 5-ти завдань кожного варіанту оцінюється оцінкою 8. Кожне завдання високого рівня оцінюється 2-ма балами.