Учні мають можливість ознйомитись з цікавими знахідками своїх однокласників: математичними софізмами, математичними хитрощами та фокусами, симетрією в архітектурі та у природі, з відомими акторами, художниками, співаками, так чи інакше повязаними з математикою
Тема заняття: Клуб мудрої сови
Мета: Сприяти розвитку творчих здібностей учнів, прагнення
до самореалізації та самовдосконалення, логічного та
критичного мислення, стійкої уваги, пам'яті, уміння
лаконічно висловлювати свої думки, кмітливості,
швидкості реакції, допитливості, уміння знаходити вихід
у складних ситуаціях та нестандартно підходити до
вирішення проблеми, підвищувати інтерес до
математики.
Сприяти вихованню почуття колективізму,
взаємодопомоги та взаємоповаги, почуття
відповідальності, культури поведінки, згуртовувати
учнівський колектив, формувати навики змістовного
проведення вільного часу.
Форма проведення: інтелектуальний клуб
Інструментарій заняття: комп'ютер, мультимедійний
проектор, екран, презентації: “Інтелектуальний клуб
“Клуб мудрої сови””, “Симетрія у природі”, “Симетрія в
архітектурі”
Хід заняття
І. Мотиваційно-цільовий аспект
Із хмари слів спробуйте скласти, будь-ласка, тему нашого заходу.
(Слайд 1)
Існує безліч різноманітних клубів за інтересами (розважальні, політичні, наукові), типу “Золотий гусак” чи “Клуб веселих та кмітливих” .
Я ж вас вітаю в інтелектуальному клубі “Клуб мудрої сови”.
(Слайд 2)
Які ваші очікування від уроку?
(Учні по черзі називають очікувані від уроку результати)
Так, учні нашого клубу ознайомлять вас з цікавими знахідками, а саме: із математичними софізмами, математичними хитрощами, математичними фокусами, симетрією в архітектурі та у природі, з відомими художниками, акторами, музикантами, так чи інакше пов'язаними з математикою. Сподіваюсь, почуте і побачене сьогодні на уроці вам запамятається та стане у нагоді.
А девізом нашого клубу є слова відомого українського математика:
Пам’ятайте, хочете навчитися плавати, сміливіше
заходьте у воду. Хочете навчитися математики,
беріться за завдання. Кожне розв’язання є
своєрідним мистецтвом пошуку.
Михайло Пилипович Кравчук
Тож, розпочинаємо.
ІІ. Рубрика “Математичні софізми”
(Слайд 3-11)
Софізми - хибні результати, отримані за допомогою міркувань, які лише здаються правильними, але обов'язково містять ту чи іншу помилку.
Софізм (з грецької - майстерність, уміння, хитра видумка, мудрість) - хибне висловлювання, яке за поверхневого розгляду здається правильним.
Математичні софізми - це хибне математичне твердження з прихованою помилкою у математичних міркуваннях.
Розв'язати софізм - означає знайти помилку в міркуваннях, за допомогою якої була створена зовнішня видимість правильності доведення.
1). Доведемо рівність:
3 = 5
25 - 15 - 10 = 15 - 9 - 6
5 (5 - 3 - 2) = 3 ( 5 - 3 -2)
5 = 3
2). Доведемо рівність:
5 = 7
Нехай а = ³∕₂b, звідси 4а =¹² ∕₂b,
тобто 4а = 6b
Нехай 4а = 14а - 10а, а 6b = 21b - 15b
14а - 10а = 21b - 15b
15b - 10а = 21b - 14а
5 (3 - 2а) = 7 (3 - 2а)
5 = 7
3). Доведемо, що 2 · 2 = 5
Використаємо рівність:
16 - 36 = 25 - 45
16 - 36 + ⁸¹ ∕₄ =25 - 45 + ⁸¹ ∕₄
4·4 - 2·4·9:2 + 9:2··9:2 =
= 5·5 - 2·5·9:2 + 9:2·9:2
(4 - 9:2)² = (5 - 9:2)²
4 - 9:2 = 5 - 9:2
4 = 5
4). Доведемо, що 0 = 1
Розглянемо систему рівнянь:
х³ - у³ = 3ху(х - у),
х - у = 1;
х³ - у³ = 3х²у - 3ху²,
х - у = 1;
х³ - 3х²у + 3ху² - у³ = 0,
х - у = 1;
Першу рівність можна переписати так:
(х - у)³ = 0,
х - у = 1;
1³ = 0 1 = 0
ІІІ. “Математичні хитрощі”
(Слайд 12-17)
Існують певні закономірності, на яких побудовано багато фокусів з відгадуванням задуманого числа. Але ці закономірності можна використовувати не лише заради жартів, а й там, де потрібно швидко порахувати, а під рукою немає, нажаль, жодного гаджета.
36 · 11 = 396 (цифри з країв залишаємо, а 3 і 6 додаємо)
53 · 11 = ? (спробуйте самостійно) (583)
48 · 11 = 528 (якщо сумою цифр є двозначне число, то праву
99 · 11 = 1089 цифру його залишаємо, а до першої цифри
даного числа додаємо 1)
76 · 11 = ? (спробуйте самостійно) (836)
2). Піднесення до квадрату двозначного числа, що закінчується 5
25² = 625
45² = 2025
Спробуйте:
75² = ?
95² = ?
3). Множення великих чисел, одне з яких - парне
32 · 125 = ?
Перегрупуємо їх:
16 · 250 = 8 · 500 = 4 · 1000 = 4000
Спробуйте смостійно:
48 · 75 = ? (24∙150 = 12∙300 = 6∙600 = 3600)
4).Швидке множення двозначних чисел
97 ∙ 96 = 9312
(100-97) (100-96) 100-7)
3 + 4 = 7
3∙4 ⟶⟶⟶⟶⟶
Спробуйте самостійно:
94 ∙ 98 = ? (6+2=8 6∙2=12 9212)
ІV. Симетрія у природі та в архітектурі
Релаксація
У будь якому виді мистецтва- хоч трохи, але знайдеться симетрія!
Симетрія всюди- вона навкруги.
Долонею світу її обережно торкни.
Завмри, від побутової сировини.
Зупинись. Стань…
Очі свої ти до природи підніми,
І побачиш у маленьких деталях симетрію ти.
Симетрія всюди- вона навкруги.
Ніжно вдивляйся у візерунки її.
Дзеркальну симетрію створить ріка.
Симетрію творить природа сама.
Така ще не зламана!
І в той час тонка -
Звичайна природна симетрія.
(Презентаці] учнів в окремих файлах)
V. ”Математичні фокуси”
(Див. слайди 19-21)
Вірш англійського автора у перекладі на російську мову:
Их было 10 чудаков,
Тех спутников усталых,
Что в дверь решили постучать
Таверны “Славный малый”.
Пусти, хозяин, ночевать,
Не будешь ты в убытке,
Нам только ночку переспать,
Промокли мы до нитки.
Хозяин тем гостям был рад,
Да вот беда, некстати:
Лишь 9 комнат у него,
И 9 лишь кроватей.
— Восьми гостям я предложу
Постели честь по чести,
А двум придётся ночь проспать
В одной кровати вместе.
Лишь он сказал, и сразу крик,
От гнева красны лица:
Никто из всех десятерых
Не хочет потесниться.
Как охладить страстей тех пыл,
Умерить их волненья?
Но, старый плут, хозяин был,
И разрешил сомненья.
Двух первых путников пока,
Чтоб не судили строго,
Просил пройти он в номер “А”
И подождать немного.
Спал третий в “Б”, четвертый — в “В”,
В “Г” спал всю ночь наш пятый.
В “Д”, “Е”, “Ж”, “З” нашли ночлег
С шестого по девятый.
Потом, вернувшись снова в “А”,
Где ждали его двое,
Он ключ от “И” вручить был рад,
Десятому герою.
Хоть много лет с тех пор прошло,
Не ясно никому,
Как смог хозяин разместить
Гостей по одному?
Иль арифметика стара,
Иль чудо перед нами,
Понять, что, как и почему,
Вы постарайтесь сами.
VІ. ”Відомі постаті та математика”
(Див. слайди 22-29)
VІІ. Підсумок уроку
Математика – це легко і цікаво! Особливо, якщо дивитися на складні речі під правильним кутом зору. Нехай знання, отримані сьогодні на занятті, стануть вам у нагоді.