Практична робота. Розв'язування стародавніх геометричних задач містить задачі папіруса Ахмеса (Рінда). В них показані способи обчислення нахилу піраміди вліво, вправо, практичні задачі побутового змісту. Розв'язування даних задач сприяє розвитку логічного мислення учнів 10-11 класів з теми «Піраміда», відпрацювання навичок виконання практичних робіт, проектів.
Задачі папіруса Ахмеса(Рінда)Математичний папірус Ахмеса (також відомий як папірус Рінда або папірус Райнда) — староєгипетське учбове керівництво по арифметиці і геометрії періоду Середнього царства, переписане ок. 1650 до н.е. писарем на ім'я Ахмес на свиток папірусу довжиною 5,25 м. і шириною 33 див. Папірус Ахмеса був виявлений в 1858 р., і часто називається папірусом Райнда на ім'я його першого власника. У 1870 р. папірус був розшифрований, переведений і виданий. ...
Отже,виходячи з розв‘язку маємо таку відповідь: нахил східної сторони рівний 5 1/25 долонь. Цікаво, що єгиптяни в рішенні цієї задачі використовували одночасно дві системи виміру - «лікті» і «долоні». Сьогодні при рішенні цієї задачі ми знайшли б тангенс кута: знаючи половину підстави і апофему . У загальному вигляді єгипетська формула обчислення секеда піраміди виглядає так:
Задача з папірусу Рінда (1700 р. до н.е.) Деякий математик налічив на вигоні 70 корів. «Яку долю від всього стада складають ці корови?» - запитав математик пастуха. «Я вигнав пастися дві треті від третини всього стада», - відповів пастух. Скільки голів худоби налічується у всьому стаді?
Висновок: Вміст староєгипетських математичних текстів дозволяє передбачити, що єгиптяни не розглядали кут, як вимірювану величину. У зв'язку з цим стає зрозумілими і їх астрономічні методи — положення планет вони прив'язували до екваторіальних сузір'їв, не використовуючи знаки Зодіаку і екваторіальні координати, що вимагали уміння вимірювати кути.