Діагностичний тест № 1 з алгебри та початків аналізу за 10 клас.

Тест містить завдання з різних тем курсу алгебри та початків аналізу 10 класу профільного рівня та має на меті допомогти учням повторити відповідний матеріал, учителю - з'ясувати рівень його засвоєння.

Додано: 27 серпня 2020
Предмет: Алгебра, 11 клас
Тест виконано: 50 разів
12 запитань
Запитання 1

Знайти область визначення функції:

____________

y = √(x + 3)²(x² - 16)

варіанти відповідей

(-4;4)

[-4;4]

(-∞;-4) ∪ (4;+∞)

(-∞;-4] ∪ [4;+∞)

(-3; 4)

Запитання 2

Розв'язати нерівність:

(х - 3)(2х +5)³(3х + 12)² ≥ 0


варіанти відповідей

(-2,5 ;3)

(3; 4)

(-∞; -2,5] ∪ [3; +∞)

(-4; -2,5)

(-∞;-4) ∪ (-4; 3)

Запитання 3

Розв'язати рівняння:

x³ + x² - 4x + 2 = 0

варіанти відповідей

1; 2

-1;2

-1;-2

-1; -1 ± √3

1; √3 - 1

Запитання 4

16¹⁸⋅ 8⁻⁵∕⁶⋅41,5

варіанти відповідей

2

4

8

32

½

Запитання 5

Розв'язати ірраціональне рівняння:

√22 - х - √10 - х = 2


варіанти відповідей

-6

6

9

10

6;10

Запитання 6

Розв'язати ірраціональну нерівність:

√х + 2 > х

варіанти відповідей

(-1;2)

[0;2)

(2;+∞)

(0;2)

(-∞;-1)

Запитання 7

Користуючись періодичністю, парністю і непарністю тригонометричних функцій, знайдіть ctg(- 16,5π)

варіанти відповідей

0

½

1

-1

√3

Запитання 8

Користуючись властивостями функції у = cos x, порівняйте числа

cos (-2) i cos (-3)

варіанти відповідей

=

<

>

Запитання 9

Спростити вираз (1+tgx)² + (1-tgx)² =2/cos²x

варіанти відповідей

2

cos²x

2/cos²x

2tg²x

0

Запитання 10

Розв'язати рівняння ctg (3x + ⅙π) = -1

варіанти відповідей

7π∕36 + πn⁄ 3, n ∈ Z

7π/36, n ∈ Z

7π/36 + πn, n ∈ Z

- 7π/36 + πn, n ∈ Z

5π/12 + πn/3, n ∈ Z

Запитання 11

Розв'язати рівняння:

sin² x + 2sin x cos x - 3 cos² x = 0

варіанти відповідей

π/4 + 2πn, n ∈ Z

-arctg 3n + 2πn, n ∈ Z

π/4 + πn; -arctg 3 + πn, n ∈ Z

π/4 + πn, n ∈ Z

π/4 + 2πn, -arctg 3 + 2πn, n ∈ Z

Запитання 12

Знайти похідну функції

y = -2sin (½x + 3π) - 5 (2x - 7)⁺⁶

варіанти відповідей

-cos (½x + 3π) + 60 (2x - 7)⁻⁷

2cos (½x + 3π) - 30 (2x - 7)⁻⁵

-2cos (½x + 3π) + 30 (2x - 7)⁻⁵

cos (½x + 3π) - 60 (2x - 7)⁻⁵

-4 cos (½x + 3π) + 60 (2x - 7)⁷

Створюйте онлайн-тести
для контролю знань і залучення учнів
до активної роботи у класі та вдома

Створити тест