Урок № 7. Числові та буквені вирази. Рівняння.

Про матеріал
Конспект уроку "Числові та буквені вирази. Рівняння". Відповідає навчальній програмі з математики для 5 класу та підручнику математика: підруч. для 5 класу ЗЗСО/ О.С.Істер, - Київ: Генеза, 2022. - 283 с.
Перегляд файлу

Урок № 7. Числові та буквені вирази. Рівняння.

Мета: узагальнити та систематизувати знання учнів про основні поняття теми; закріпити навички учнів, застосовувати набуті знання під час складання і обчислення значень буквених виразів та розв’язування рівнянь; сприяти формуванню пізнавального інтересу; формувати вміння правильно і чітко висловлювати влас­ні думки, формулювати математичні твердження; виховувати дисциплінованість, позитивне ставлення до знань.

 Очікувані результати: учні вільно здійснюють арифметичні обчислення з іменованими числами; розв’язують рівняння з одним невідомим, перевіряють чи одержане значення невідомого є розв’язком рівняння.

 Тип уроку: засвоєння знань, формування вмінь.

Хід уроку

  1. ОК (Організація класу)
    Демонстрація навчальної презентації.

Слайд 2.Емоційне налаштування: Наш девіз:

Не махай на все рукою,

 не лінуйся, а учись.
Бо чого навчишся в школі,

знадобиться ще колись.

  1. АОЗ(Актуалізація опорних знань)

Слайд 3. Перевірка домашнього завдання.

Слайд 4-6. Повідомлення теми уроку та мотивація навчально-пізнавальної діяльності учнів. Історичний екскурс.

Мета: Узагальнити та систематизувати знання з теми:

 «Числові та буквені вирази. Рівняння»

 та розвинути навички застосовувати теоретичні знання на практиці.

Історичний екскурс.

Початки математики на землях сучасної України йдуть з доісторичних часів. Уже в найперших писемних знахідках є докази, які свідчать про математичні знання їх авторів.

В часи Київської Русі на землях сучасної України вже використовували певні відомості з арифметики та геометрії.

Рівняння з одним невідомим розв’язували вже в давньому Єгипті і давньому Вавілоні. У Стародавній Греції деякі види рівнянь розв’язували за допомогою геометричних побудов. Грецький математик Діофант розробив методи розв’язку рівнянь і систем таких рівнянь. Основний твір Діофанта — Арифметика в 13 книгах.

  1. ВНМ (Повторення начального матеріалу)

Слайд 7-10. Повторення теоретичного матеріалу початкової школи.

Повторимо матеріал:

Вирази, які складаються із чисел, знаків дій та дужок називають числовими виразами.

(53 349 - 12 158) 17;        11 859 – (891 + 1876 : 2).

Вирази, які містять букви, числа, знаки дій та дужки називають буквеним виразами.

Якщо в буквеному виразі підставити замість букв певні числа, то одержимо числовий вираз.

а : к;    49 + а;     (а + в) – с;     902 : а -14.

 

Формула – це запис деякого правила, за допомогою букв, що встановлює взаємозв'язок між величинами.

 

S = а · b                                         S = а · а           S = v · t

Р = (а + b) · 2                               Р = 4а               v = S : t;     t = S : v

Рівняння - рівність, яка містить невідоме число, позначене буквою. Невідоме число називають змінною.

Доданок + доданок = сума  15 + х = 20

Доданок = сума – доданок х = 20 – 15;   х = 5

Зменшуване - від’ємник = різниця х-5=8

Зменшуване = різниця + від’ємник х=8+5;   х=13

Від’ємник = зменшуване – різниця 15-х=10

х=15-10

х=5

Множник · множник = добуток  12· х = 36

Множник = добуток : множник : х = 36 : 12 ;  х = 3

Ділене : дільник = частка 

Ділене = частка · дільник:  х : 5 = 8;   х = 8 · 5 ;  х = 40

Дільник = ділене : частка:   15 : х = 5;    х = 15 : 5;  х = 3

Слайд 11. Математична розминка

  1. Повторимо правила знаходження невідомих компонентів арифметичних дій, що починаються словами: «Щоб знайти...».

Слайд 12-13. Рухлива гра.

Раз, два, три, чотири, п'ять -

Усі ми вміємо рахувати.

Раз - піднялись, підтягнулися.

Два - зігнулись, розігнулися.

Три - в долоні три хлопки,

Головою три кивки,

На чотири руки ширше,

П'ять - руками помахати,

Шість - за парти посідати!

Слайд 14. Повторення навчального матеріалу. Формування вмінь. Усні завдання.

Класна робота

Вправа(Усно)

 Які з виразів є числовими, а які буквеними? Обчисли значення числових виразів:

1) (7 + 14) ∙ 2; 2) (a + b) : 7; 3) c - 2 + m;

4) 25 + 36 : 9;        5) 7 ∙ 3 - 5 ∙ 0; 6) p ∙ (2 - a).

Відповіді: 1) (7 + 14) ∙ 2 = 21 ∙ 2 = 42 

4) 25 + 36 : 9 = 25 + 4 = 29      

5) 7 ∙ 3 - 5 ∙ 0 = 21 – 0 =21

Слайд 15. Обчислити значення виразу. Завдання 1 рівня складності.

Обчисліть значення виразу:

1) 256 – ( 44 + 192) =

2) 414 + 145 – 547 =

3) ( 249 – 142) – (62 + 20) =

4) 2 765 : 2 765 =

5) 3 + 8 234 : 8 234 =

6) 345 – ( 257 + 69 ) =

7) 457 – 367 – 69 =

Слайд 16-19. Робота з підручником. Розгляд задач та вправ 2 рівня складності: № 77, 80, 83, 85.

Завдання № 77

Обчисли значення виразу та дізнаєшся рік заснування  міста Кременець Тернопільської області.

3150 - (980 : 28 + 17) ∙ 37

Відповідь: 1226 р.

          4          1     2       3

3150 - (980 : 28 + 17) ∙ 37 = 1226

Завдання №80. 

Обчисли значення виразу b + a : 7 - 1599, якщо a = 18 186, b = 3879.

 

          2             1     3

3879 + 18 186 : 7 – 1599 

Відповідь: 4878

Завдання №83. 

Розв’яжи рівняння:

1) х + 2971 = 5317;        2) х - 72 581 = 2143


1) х + 2971 = 5317     

х = 5317 – 2971

х = 2346

2346 +2971 = 5317

2)  х – 72 581 = 2143

х = 72581 + 2143

х= 74 724

74 724 – 72 581 = 214

Завдання № 85. 

Розв’яжи рівняння:

  1.      х ∙ 24 = 15 048;

х = 15 048 : 24

х = 627

  1.    ∙ 24 = 15 048
  1.      х : 427 = 25

  х = 427 ∙ 25

х= 10 675

10 675 : 427 = 25

Слайд 20. Робота з підручником. Розгляд вправи 3 рівня складності: № 87.

Завдання № 87.

Запиши вираз та знайди його значення:

  1.      від числа 11 209 відняти добуток чисел 45 і 203;
  2.      до числа 1239 додати частку чисел 6084 і 39.

Відповідь:

  1.      2074;
  2.      1395.

Слайд 21. Гімнастика для очей.

  1. ЗВ (закріплення вивченого)

Слайд 22-23. Завдання на закріплення практичних навиків обчислення виразів.

1. Знайти значення виразу:

1) 256 – ( 44 + 192) =

2) 414 + 145 – 547 =

3) ( 249 – 142) – (62 + 20) =

4) 2 765 : 2 765 =

5) 3 + 8 234 : 8 234 =

6) 345 – ( 257 + 69 ) =

7) 457 – 367 – 69 =

2. Обчисли значення виразу:  1258 : a + 374, якщо a = 17; 37.

Слайд 24. Додаткові завдання на розв’язування рівнянь.

Розв’яжіть рівняння:

1) 12 492 - х = 7543;          2) 371 + х = 19 002;

3) 29 008 : х = 37;              4) 56 ∙ х = 48 552.

  1.                Підсумок

Слайд 27. Підсумок уроку. Усне опитування.

1. Опишіть, що являє собою числовий вираз.

2. Опишіть, що являє собою буквений вираз.

3. Яке число називають коренем рівняння?

4. Що означає розв’язати рівняння?

5. Як знайти невідомий доданок?

6. Як знайти невідоме зменшуване?

7. Як знайти невідомий від’ємник?

  1.                Рефлексія

Слайд 28. Завдання для домашньої роботи.

Опрацювати підручник  сторінки 13-14

Виконати завдання: № 84 (1,2); 86 (1, 2).

РЕФЛЕКСІЯ

На уроці мені не сподобалось…

На уроці мені сподобалось…

На уроці мені дуже сподобалось…

 

 

 

 

 

 

 

 

docx
Додав(-ла)
Ковальчук Інна
Додано
23 березня
Переглядів
692
Оцінка розробки
Відгуки відсутні
Безкоштовний сертифікат
про публікацію авторської розробки
Щоб отримати, додайте розробку

Додати розробку