В даній розробці представлені цікаві нестандартні способи знаходження НСД. Учням на прикладах показано типові помилки, які найчастіше зустрічаються при знаходженні НСД.
Урок математики у 6 класі
_________________________________________________
Красавіна В.В., учитель математики РГ «Гармонія», м. Рівне
_____________________________________________________________
Тема. Спільний дільник кількох чисел. Найбільший спільний дільник. Взаємно прості числа
Мета. Навчати учнів знаходити спільні дільники кількох чисел. Формувати навички знаходження найбільшого спільного дільника за алгоритмом. Підвищувати рівень математичної культури. Розвивати логічне мислення учнів
Тип уроку. Урок засвоєння нових знань
Хід уроку
І. Забезпечення емоційної готовності
Слайд 1
Учитель. Добрий день! Як настрій? Посміхніться один одному і побажайте удачі!
ІІ. Актуалізація опорних знань.
Учитель. Розшевелімо ваші сірі клітинки, пригадаймо дещо з попередніх уроків.
Фронтальне опитування
Учитель. Продовжимо активувати сірі клітинки. Візьміть сигнальні картки. Нагадаємо: зелена картка – правильна відповідь; червона – неправильна. Отож тест „Чи істинне твердження?”. В картці самоконтролю під час тестування відмічайте правильність своїх відповідей + або -.
Слайд 2
Тест
Слайд 3
Слайд 3
Учитель. Тепер оцініть, будь ласка, свою роботу.
Слайд 4
ІІІ. Повідомлення теми уроку. Постановка цілей уроку
Учитель. Ми не дарма пригадали з вами саме цей матеріал. Сьогодні на уроці ми його використаємо для вивчення нової теми. Запишіть в зошитах число, класна робота.Тема уроку:
Слайд 5
Учитель. Діти, прочитавши тему уроку, скажіть, що нового ви зможете сьогодні дізнатися, навчитись робити?
Дізнатись: що таке спільний дільник кількох чисел, що таке НСД; які числа називають взаємно простими.
Навчитись: визначати спільні дільники; взаємно прості числа; знаходити НСД.
ІV. Мотивація. Створення проблемної ситуації
Учитель. Уявіть таку ситуацію. У вас день народження. За традицією вашого класу, ви збираєтесь пригостити однокласників. Мама купила два сорти цукерок: І сорту виявилось 84 цукерки, ІІ – 56. Постають питання:
Слайд 6
V. Формування та засвоєння нових знань
Учитель. Яким чином ми можемо дати відповідь на І запитання? Спочатку проаналізуємо, скільки подарунків можна зробити з цукерок І сорту? Знаходимо дільники числа 84.
Слайд 7
Учитель. Далі знаходимо дільники числа 56.
Слайд 7
Учитель. Знайдемо, які є однакові дільники. Це і є спільні дільники чисел 84 і 56.
Слайд 7
Учитель. Яке найбільше з цих чисел? 28. Ось і відповідь на ІІ запитання. НСД (56;84) = 28.
Слайд 7
Учитель. Відповімо на ІІІ запитання. Чудовий збіг! Як раз 28 учнів у вашому класі! Такий метод знаходження НСД називається за означенням НСД.
Прочитаємо означення в підручнику на сторінці 25.
Цей метод не єдиний із відомих.
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Учитель. Особливі випадки знаходження НСД.
Слайд 12
VІ. Формування вмінь
Завдання 1
Слайд 13
Відповідь:
Слайд 13
Завдання 2.
Слайд 14
Відповідь:
Слайд 14
Слайд 15
Учитель.
Тепер спробуйте самостійно виконати вправи. Можете використовувати картку-підказку.
Слайд 16
VІІ. Рефлексивно-оцінювальний етап.
Самоперевірка.
Слайд 17
В картку самоконтролю учні ставлять + або – про правильність виконання завдань.
Роблять висновок, визначаючи для себе істинність одного з наступних тверджень:
VІІІ. Підсумок уроку.
Задача. На уроці фізичної культури проводяться змагання. Допоможіть вчителю. Якщо в вашому класі 28 учнів: 16 дівчат і 12 хлопців, то яку найбільшу кількість команд однакового складу можна створити?
Слайд 18
Відповідь: НСД(12;16) = 4.
ІХ. Домашнє завдання.
Слайд 19
Слайд 20
1