Урок 2. Конспект
Що є графіком лінійного рівняння ax+by=c?
Розглянемо лінійне рівняння . Виразимо змінну у через змінну х.
by = – ax + c | ÷b y = −ax+c y =− 𝑎 𝑥 + 𝑐 , b ≠ 0
𝑏 𝑏
Ми одержали лінійну функцію, графіком якої є пряма.
Тобто графіком рівняння ax+by=c, a≠0, b≠0 є пряма.
Оскільки пряма однозначно задається двома своїми точками, то для побудови прямої, яка є графіком лінійної функції, достатньо знайти координати двох точок графіка.
Отже, щоб побудувати графік лінійного рівняння ax + by = c з двома змінними треба:
1. Взяти будь-які 2 значення х (х1 та х2) та знайти відповідні їм значення у (у1 та у2);
2. Побудувати в координатній площині точку А (х1у1) та точну В (х2у2)
х |
–2 |
4 |
у |
10 |
–5 |
3. Через точки провести пряму.
Наприклад 1. Побудувати графік рівняння
5х + 2у = 10
2у = 10 – 5х | ÷ 2 у = 5 – 2,5у
АБО!
х |
0 |
2 |
у |
5 |
0 |
Обрати точки перетину графіка з осями координат (0; у) – точка перетину з віссю х, (х; 0) – точка перетину з віссю у.
Тобто 5х + 2у = 10
Знайдемо точку перетину з осями:
з віссю Ох у = 0 х = 2 з віссю Оу х = 0 у = 5
Розглянемо окремі випадки лінійного рівняння.
Якщо лінійне рівняння ax + by = c, a = 0, b ≠ 0, то рівняння має вигляд by=c | ÷ b
c y = b
Графіком рівняння ax+by=c, a = 0, b ≠ 0 є пряма паралельна осі Ох, що
c проходить через точку ( 0; ) b
Наприклад 2, побудуйте графік рівняння
а) 4у = 8 b) у = –3 у= 2
Якщо в лінійному рівняння ax+by=c, a ≠0, b = 0, то рівняння має вигляд ax = c| ÷ a
c
x = , a ≠ 0.
a Графіком рівняння ax+by=c, a ≠ 0, b = 0, є пряма паралельна осі Оу, що c проходить через точку ( ; 0). a
Наприклад 3, побудуйте графік рівняння:
а) 3х = 9 b) х = – 5 х = 3
Якщо в рівнянні ax + by=c, a = 0, b = 0, с = 0, то рівняння має вигляд 0х + 0у = 0, тобто будь-яка пара чисел є розв’язком цього рівняння, а його графіком є вся координатна площина.
Якщо в лінійному рівнянні ax + by = c, a = 0, b = 0, с ≠ 0, тобто воно не має розв’язків отже його графік не містить жодної точки.
Давайте розв’яжемо разом:
1. Які з точок А (7; –4), В (5; – 2) належать графіку рівняння 7х + 5у = 25
Точка належить графіку рівняння якщо координати цієї точки є розв’язком даного рівняння.
А (7; –4) Підставимо координати точки в рівняння 7х + 5у = 25
Маємо 7*7+5(–4) = 25
49 – 20 = 25 29 ≠ 25
Отже, точка А (7; –4) не належить графіку рівняння.
В (5; – 2) Підставимл координати точки до рівняння
Маємо 7*5 + 5(–2) = 25
35 – 10 = 25
25 = 25
Отже, точка В (5; – 2) належить графіку рівняння.
2. Побудуйте графік рівняння
х |
2 |
3 |
у |
4 |
3 |
a) х + у = 6
Нехай х = 2, тоді 2 + у = 6 у = 4
Нехай х = 3, тоді 3 + у = 6 у = 3
х |
–1 |
–2 |
у |
6 |
4 |
b) x – 0.5y = 4 x + 4 = 0.5y | *2 y = 2x + 8
c) 2x + 3y = 6
Знайдемо точку перетину графіка рівняння з осями координат.
з віссю Ох у = 0 2х = 6 х = 3 з віссю Оу х = 0 3у = 6 у = 2
|
Резюмування