19 квітня о 18:00Вебінар: Екологічна свідомість: від теорії до практики, або як почати сортувати сміття та зіровейстити

Конспект уроку з математики для 5 класу на тему: Самостійна робота з теми "Звичайні дроби"

Про матеріал
Мета уроку: перевірити знання учнів під час виконання самостійної роботи. Тип уроку: перевірка знань, умінь, навичок. Обладнання та наочність: самостійний аркуш, лінійка, олівець, ручка .
Перегляд файлу

Математика

Тема уроку: Самостійна робота

Мета уроку: перевірити знання учнів під час виконання самостійної роботи.

Тип уроку: перевірка  знань, умінь, навичок.

Обладнання та наочність: самостійний аркуш, лінійка, олівець, ручка .

Дата проведення:   5-Б – 26.01.2015                         

Хід уроку

І. ОРГАНІЗАЦІЙНИЙ ЕТАП

  1. Привітання вчителя і учнів.
  2. Організація готовності учнів до уроку, налаштування їх на роботу.

ІІ. АКТУАЛІЗАЦІЯ ОПОРНИХ ЗНАНЬ

Математичний диктант.

  1. Два дроби з однаковими знаменниками рівні, якщо їх чисельники рівні.
  2. Із двох дробів з однаковими знаменниками більший (менший) той дріб, у якого чисельник більший ( чисельник менший).
  3. Дріб – це вираз виду , де a – називається чисельником, а b – знаменником дробу, риска дробу « –» – означає дію ділення.
  4. Що показує знаменник дробу? Чисельник дробу?

(Відповідь: знаменник показує на скільки частин поділена одиниця(ціле), а чисельник – скільки цілих частин взято.)

  1. Правильний дріб завжди менший від 1.
  2. Неправильний – більший за 1 або дорівнює 1.
  3. Які дроби називають правильними? (у яких a b).Які неправильними?

( у яких  аb або a=b).

  1. Що означає риска дробу? ( дію ділення).

ІІІ. ПОВІДОМЛЕННЯ ТЕМИ І МЕТИ УРОКУ

  • Сьогодні на уроці ми з вами проведемо «Самостійну роботу».
  • Мета сьогоднішнього уроку: перевірка ваших знань, отриманих протягом попередніх уроків.

IV. САМОСТІЙНА РОБОТА

Варіант 1.

Початковий рівень ( 1 завдання – 0,5 балів)

  1. – приклади звичайних…
  2. У запису число aце … дробу, він показує…
  3. Дріб , у якого m<n, називається … дробом.
  4. З двох дробів із однаковими знаменниками більший той, у якого…
  5. Усі неправильні дроби … або дорівнюють …
  6. Результат ділення m : n можна записати у вигляді дробу…
  7. Риску дробу можна розглядати як знак…
  8. Неправильний дріб можна записати у вигляді … числа.
  9.  Щоб знайти від числа 15, треба _:__.

Середній рівень ( 1-4 завдання – 0, 5 балів, 5-8 – 1 бал )

  1. Визначте, яка частина фігури, зображеної на рисунку, заштрихована.

а)                          б)                       в)                                        г)

 

  1. Знайдіть від 36.

А 54                     Б 24                   В 12                  Г 72

  1. Знайдіть число, якщо його становлять 12.

А 16                     Б 9                      В 48                  Г 36

  1. Порівняйте:

а) ;         б) ;        в) .

  1. Обчисліть значення виразу:

  1. Перетворіть неправильний дріб у мішане число:

а) …;                       б)

  1. Перетворіть мішане число у неправильний дріб:

а) …;               б)

  1. Знайдіть значення виразу:

Достатній і високий рівні ( 1 завдання – 3 бали )

  1. Запишіть у вигляді дробів 1, 3, 5, 15, 20 частин числа, яке поділили на 40 рівних частин.
  2. Накресліть координатний промінь. Виберіть зручний одиничний відрізок і позначте на промені такі точки A, B, C, D, E.
  3. Додайте числа 244 до числа 600.
  4. У 5 – А класі навчаються 32 учні, із них займаються у шкільному математичному гуртку. Знайдіть загальну кількість членів цього гуртка, якщо кількість учнів 5 – А класу становить від неї .

Варіант 2.

Початковий рівень ( 1 завдання – 0,5 балів)

  1. приклади … дробів.
  2. У запису число bце … дробу, він показує…
  3. Дріб , у якого m n, називається … дробом.
  4. Якщо , то a c.
  5. Усі правильні дроби … від одиниці.
  6. Дріб можна розглядати як результат дії …
  7. Запис можна читати так: « … ».
  8. Мішане число  можна записати у вигляді дробу: …
  9. Щоб знайти число, від якого взяли  і отримали 15, треба _:__.

Середній рівень ( 1-4 завдання – 0, 5 балів, 5-8 – 1 бал )

  1. Визначте, яка частина фігури, зображеної на рисунку, заштрихована.

а)                          б)                       в)                                        г)

  1. Знайдіть від 48.

А 72                     Б 32                   В 16                 Г 96

  1. Знайдіть число, якщо його становлять 24.

А 32                     Б 18                   В 48                  Г 72

  1. Порівняйте:

а) ;         б) ;        в) .

  1. Обчисліть значення виразу:

  1. Перетворіть неправильний дріб у мішане число:

а) …;                       б)

  1. Перетворіть мішане число у неправильний дріб:

а) …;               б)

  1. Знайдіть значення виразу:

Достатній і високий рівні ( 1 завдання – 3 бали )

  1. Запишіть у вигляді дробів 1, 3, 5, 15, 20 частин числа, яке поділили на 60 рівних частин.
  2. Накресліть координатний промінь. Виберіть зручний одиничний відрізок і позначте на промені такі точки M, N, P, R, S.
  3. Додайте числа 244 до числа 300.
  4. У 5 – А класі навчаються 32 учні, із них займаються у шкільному математичному гуртку. Знайдіть загальну кількість членів цього гуртка, якщо кількість учнів 5 – А класу становить від неї .

 

 

 

V. ПІДСУМКИ УРОКУ

  1. Підсумкова бесіда
  • Які завдання давалися найважче? Чому?

2. Відповісти на питання, що виникли у дітей під час виконання Самостійної роботи.

VІ. ДОМАШНЄ ЗАВДАННЯ

  1. Завдання за підручником: Н.А. Тарасенкова, І.М. Богатирьова,            О.П. Бочко, О.М. Коломієць, З.О. Сердюк. Розділ V, § 24, № 923, 934, 944, 948.
  2. Інструктаж:
  1. № 923 подібний до № 922.
  2. № 934 подібний до № 933. Щоб виконати цю вправу вам необхідно повторити правило виділення цілої частини з неправильного дробу, знаючи це правило дану вправу ви виконаєте без проблем.
  3. № 944. Подібний до № 943. Щоб виконати цю вправу вам також знадобиться правило виділення цілої частини з неправильного дробу.
  4. № 948 подібний до № 947. Щоб виконати цю вправу без проблем, вам необхідно повторити правило перетворення мішаного числа у неправильний дріб.
  5. І обов’язково почитайте § 24, і вивчіть всі основні правила.

 

1

 

docx
Пов’язані теми
Математика, Розробки уроків
Додано
24 лютого
Переглядів
44
Оцінка розробки
Відгуки відсутні
Безкоштовний сертифікат
про публікацію авторської розробки
Щоб отримати, додайте розробку

Додати розробку