Представлена робота - це розробка уроку з теми "Прямі та площини у просторі".
Мета теми – закласти основи для навчання учнів конструюванню геометричних тіл, дослідженню їх властивостей і вимірюванню геометричних величин; продовжити реалізацію ідеї моделювання реальних об'єктів і відношень між ними за допомогою геометричних фігур і відповідних математичних відношень; сприяти розвитку в учнів навичок логічного виведення.
Тема уроку. Прямі і площини в просторі.
Мета уроку: сформувати уявлення про площину, простір, нескінченність; ознайомити учнів зі способами задання площини, розміщення площин і прямих у просторі.
Освоївши матеріал уроку, учні повинні:
знати:
вміти:
Хід уроку
І. Виклад матеріалу.
Поняття простору і площини
Досі ви вивчали геометрію площини — планіметрію. Сьогодні ми ознайомимося з геометрією простору — стереометрією. Так само, як і планіметрія, стереометрія оперує поняттями: точка, відрізок, промінь, пряма, та додається нове поняття — «площина». Щоб створити образ цього поняття, уявімо рух точки, прямої і площини.
Точка рухається в одному напрямі, образом її руху є... (учні відповідають — пряма).
Горизонтальна пряма рухається, скажімо, вертикально. Образом її руху стане... (площина, — відповідають учні).
Площина рухається і заповнює простір.
Зауважимо, що пряма, площина, простір нескінченні. Розуміння нескінченності у математиці, фізиці, історії різне.
Математики мислять масштабно: нескінченність це дуже багато і далеко. Фізики можуть вважати нескінченно великим навіть відрізок завдовжки в один сантиметр, залежно від того, чим вимірювати. Якщо, наприклад, атомами, електронами, протонами.
А якщо вимірювати час: сьогодні, завтра, учора, зараз, цієї хвилини, цієї секунди? Навіть найважливіші події з часом стають історією. А коли? Ми спостерігаємо за подіями «із зовні», «з нескінченності кроків». Велике бачиться на відстані, віч-на-віч обличчя не побачити. Але щоб оцінити важливість події, потрібно віддалитися від неї на нескінченно багато миттєвостей, пережити й набути досвіду. У кожного ці миттєвості свої, але світ єдиний, відрізняються лише точки зору на нього. Наочно уявити нескінченність допоможе гравюра Ешера.
Ми живемо в просторі, в тривимірному світі. Площина допомагає людині сприймати світ, розглядати його. Планіметрія це завдання виконувала протягом багатьох століть. Площина потрібна для того, щоб зосередити думки, зупинити мить. Цим прийомом користуються і художники. Перед вами репродукція картини В.І.Сурикова „Бояриня Морозова”.
Картина розтягнута в ширину, ніби підкреслює масштабність події. На триптиху П.Д.Коріна «Олександр Невський» постать у центральній частині витягнута, зібрана, натягнута як струна. Відразу сприймаєш велич духу людини. Прикладів застосування математичних понять у різних галузях знань багато. Наприклад, уявлювані площини в хімії допомогли створити теорію ізомерів. А в природі кожен листок, перебуваючи у своїй площині, повертається до Сонця, і планета дихає.
Можна навести ще багато прикладів, але ви вже зрозуміли, що з площинами ми зустрічаємося щодня. Моделлю площини може бути, скажімо, поверхня учнівського стола.
Пригадаємо, як можуть розміщатися прямі на площині. (Учні відповідають.)
Правильно, прямі можуть перетинатися і не перетинатися. Як же можна задати площину? (Учні відповідають.)
Підбиваємо підсумок. Площину можна задати: трьома точками, що не лежать на одній прямій, паралельними прямими, прямими, що перетинаються, прямою і точкою, що не лежить на цій прямій.
А зараз перевіримо ваше уміння бачити і спостерігати.
• Перед вами фотографія пам'ятника Петру І в Санкт-Петербурзі. Чому кінь не падає? Адже він стоїть на двох ногах!?
• Коли три мухи, які летять, будуть в одній площині?
• Чому табурет на трьох ніжках більш стійкий, ніж табурет на чотирьох ніжках?
Розміщення площин і прямих у просторі.
Площини називаються паралельними, якщо вони не мають спільних точок. Запис: .
Площини перетинаються, якщо вони мають хоча б одну спільну точку. Площини перетинаються по прямій. Запис: .
Паралельні площини і площини, що перетинаються, утворюють видимий об'єм наших приміщень. Ви не помічали, що площина стелі, пофарбована білим, робить кімнату вище? А якщо стіни зробити червоними, то в людини підвищується рівень адреналіну в крові. А жовтий і зелений кольори заспокоюють.
У просторі, так само, як і на площині, пряма задається двома точками. Прямі можуть бути паралельними або перетинатися, тоді вони лежать в одній площині.
Прямі в просторі, які лежать у різних площинах, та не паралельні і не перетинаються, називаються мимобіжними.
Розміщення прямої і площини.
Пряма і площина можуть перетинатися. Запис: .
Пряма може бути паралельною площині. Запис: . У цьому випадку пряма і площина спільних точок не мають.
Пряма, яка перетинає площину, перпендикулярна до цієї площини, якщо вона перпендикулярна до будь-якої прямої, що лежить у цій площині, і проходить через точку перетину. Запис: .
Відстанню від точки до площини називається довжина перпендикуляра, проведеного з цієї точки до площини.
Дві площини, що перетинаються, називаються перпендикулярними, якщо третя площина, перпендикулярна до прямої перетину даних площин, перетинає їх по перпендикулярних прямих.
II. Закріплення матеріалу.
Задачі на розглядання
Задача 1. Назвіть (рис. 1):
Рис. 1 Рис. 2
Доведіть, що точки А, В, С і D лежать в одній площині.
Задача 2 (рис. 2). Назвіть:
Прямі АВ і АС перетинаються з деякою прямою в точках К і М відповідно. Доведіть, що М, К, С, і В лежать в одній площині.
Задача 3. Назвіть (рис. 3):
Доведіть, що точки А, В, С і D лежать в одній площині.
Задача 4. Побудуйте лінію перетину (рис. 4):
Рис. 3 Рис. 4 Рис. 5
Задача 5. Чи лежить точка К в площині паралелограма АВСD, якщо N належить прямій AD, а М належить прямій ВС (рис. 5)?
Задачі на уяву
1. Чи можуть дві різні площини мати три спільні точки, що не лежать на одній прямій?
2. Чи можуть дві різні площини перетинатися по двом прямим?
3. Прямі а, b, c не належать одній площині, але проходять через одну точку. Скільки різних площин можна провести через ці прямі, взяті по дві?
4. Площини перетинаються по прямій а. Пряма b, що лежить у площині, перетинає площину в точці А. Де лежить точка А?
5. Точка А і В та пряма СD не лежать в одній площині. Яке взаємне розміщення прямих CD i AB?
Завдання на розуміння мови математичних символів
а) площини перетинаються по прямій а;
б) точка А є точкою перетину площини і прямої а?
2. Як можуть розміщатися прямі а та АВ у площинах і ? Запишіть мовою символів.
ІІІ. Домашнє завдання.
Вивчити опорний конспект, розв’язати задачі.
Запишіть висловлення мовою символів:
Тестові завдання
1) М; 2) К; 3) N; 4) Р.
б) Дано тетраедр АВСS. Яка з точок не лежить у площині трикутника АВС?
1) А; 2) Z; 3) Y; 4) X.
2. а) Якій із вказаних площин куба не належить точка А?
1) ВСД; 2) А1С1С; 3) ВВ1А1; 4) ВСС1.
б) Якій із вказаних площин тетраедра належить точка У?
1) ASB; 2) ASC; 3) BSC; 4) ZBC.
3. У просторі дано прямі а та в, які перетинаються в точці С. Скільки різних площин можна провести через ці прямі?
1) дві; 2) безліч; 3) одну; 4) жодної.
4. а) Площини тетраедра АSС і АSВ перетинаються по прямій:
1) AS; 2) AB; 3) AC; 4) SC.
б) Площини куба АВС і В1ВД перетинаються по прямій:
1) ВС; 2) ВД; 3) АВ; 4) ВВ1.
1) АВ і АS; 2) АВ і АС; 3) АС і ВС.
б) Площину грані АА1Д1Д куба АВСДА1В1С1Д1 можна задати прямими:
1) Д1Д і ДС; 2) АД і АВ; 3) АА1 і АД; 4) А1Д1 і Д1С1.