Реферат "Історія розвитку цифрових технологій"

Про матеріал

Тема: «Історія розвитку цифрових технологій».

Мета: ознайомити учнів з історією зародження та розвитку ЕОМ, поколіннями ЕОМ, їх основними характеристиками, основними галузями застосування комп'ютерів, видатними постатями, чиї імена пов'язані зі створенням обчислювальних машин.

Супровод до реферату( презентацію) можна переглянути за посиланням:

https://naurok.com.ua/prezentaciya-istoriya-rozvitku-cifrovih-tehnologiy-204756.html

Перегляд файлу

 

Зміст

Вступ …………………………………………………………….. 2 - 3

1.Історія розвитку ЕОМ

1.1 Перші обчислювальні машини …………………………….. 4 - 5

1.2 Обчислювальні машини ХІХ ст …………………………… 5 - 6

1.3 Перші електронно-обчислювальні машини ………………. 6 - 8

2. Покоління обчислювальної техніки

2.1 І покоління ЕОМ ……………………………………………. 9 - 12

2.2 ІІ покоління ЕОМ ………………………………………….... 12 - 13

2.3 ІІІ покоління ЕОМ …………………………………………... 13 - 14

2.4 IV покоління ЕОМ …………………………………………... 14

2.5 V покоління ЕОМ …………………………………………… 14

3. Цифрові технології майбутнього…………………………….. 15 - 16

Висновки …………………………………………………………. 17

Глосарій ………………………………………………………….. 18

Список використаної літератури ……………………………….. 19


Вступ

Неможливо точно відповісти на питання, хто саме винайшов комп'ютер. Річ у тому, що комп'ютер не є винаходом однієї людини. Він увібрав у собі ідеї та технічні рішення багатьох вчених та інженерів. Розвиток обчислювальної техніки стимулювався потребою у швидких та точних обчислюваннях і тривав сотні років. У процесі розвитку обчислювальна техніка ставала дедалі більш досконалою. Цей процес триває і в наш час. [6]

Розвитку сучасної обчислювальної техніки сприяв, з одного боку, розвиток пристосувань для рахунку, розвиток систем числення, методів обчислень, математичної логіки, що визначило логічну схему комп’ютера, з іншого боку, розвиток науки та техніки у галузі електрики, електронної теорії, що визначило елементну базу сучасних комп’ютерів.

Первісні люди не знали чисел і використовували для запам'ятовування певної кількості предметів наочне уявлення – різні підручні засоби: мушлі, камінці тощо. Розвиток рахунку пішов значно швидше, коли людина здогадалась звернутися до самого природного рахункового апарата — своїм пальцям. Від пальцевого рахунку бере початок п'ятіркова система числення (одна рука), десяткова (дві руки), двадцяткова (пальці рук і ніг). Деякі народи для запам'ятовування кількості предметів використовували зарубки. Наприклад, на дощечці зарубками відмічався борг, потім дощечка розламувалася навпіл упоперек всіх зарубок. Одна половина віддавалася боржнику, друга - господареві. Такі дощечки називалися "бірки". В Англії такий спосіб запису податків існував до кінця XVII ст. На Русі зарубки робилися на палиці, яка називалась носом (звідси назва "зарубити на носу"). Також існували рахункові мотузки. Перуанські рахункові мотузки називалися "кіпу". Рахували на них за допомогою вузликів. А щоб не забути, що де рахувалось, "кіпу" фарбували в різні кольори. Подібний спосіб рахунку застосовували також стародавні індійці та китайці.

 

Найпоширенішим пристосуванням для рахунку був абак (або рахівниця). Найстародавніша рахівниця була знайдена при археологічних розкопках на одному з островів Егейського моря (знахідка відноситься до IV тис. до н.е.).

Абак (від грецького abax-дошка) – рахункова дошка, що широко застосовувалася в Древній Греції. Грецький абак являв собою дошку, на якій паралельні лінії позначали розряди одиниць, десятків, сотень і т.д. На лініях вміщували відповідне число жетонів (камінців, кісточок). У Древньому Римі на дошці для зручності робили для камінчиків жолобки. Це пристосування називалося "кальку лі" ("калкулюс" - галька). У Китаї камінчики замінили на намистини, нанизані на прутики, які закріплювались на дерев'яній рамі. Кожний прутик був розділений на дві нерівні частини. У одній частині було 5 намистин, по кількості пальців на руці, а в другій – тільки 2, по кількості рук. Це пристосування називалося "суан-пан". Їм користувалися в Китаї вже в VI столітті. У Японії подібна конструкція набула назву "соробан".

У Західній Європі знайомство з абаком відбулося в Х столітті, коли після знайомства з індо-арабською системою числення Герберт (940-1003) (з 999 р. - Римський папа Сильвестр II) побудував рахункову дошку, на якій замінив певне число жетонів одним жетоном з апісом. У XVI віці абак розповсюдився і в Росії. У російському абаці на один прутик вміщували відразу 10 кісточок, по числу пальців на двох руках. Цей вид абака називався "руські щоти" і користувалися ними аж до XVIII ст. [9]

1. Історія розвитку ЕОМ

1.1 Перші обчислювальні машини

Вважається, що перший у світі ескізний малюнок тринадцяти розрядного десятинного сумуючого пристрою на базі коліщаток з десятьма зубцями був виконаний Леонардо да Вінчі в одному з його щоденників (вчений почав вести цей щоденник ще до відкриття Америки 1492 р.)

1623 року (більш ніж через 100 років після смерті Леонардо да Вінчі) німецький вчений Вільгельм Шиккард запропонував свою модель шести розрядного десятинного обчислювача, який мав складатися також із зубчатих коліщаток та міг би виконувати додавання, віднімання, а також множення та ділення. Винаходи да Вінчі та Шиккарда були знайдені лише в наш час і залишилися тільки на папері.

1642 року 19-річний французький математик Блез Паскаль сконструював першу в світі працюючу механічну обчислювальну машину, відому як підсумовуюча машина Паскаля ("Паскаліна"). Ця машина являла собою комбінацію взаємопов'язаних коліщаток та приводів. На коліщатках були зображені цифри від 0 до 9. Якщо перше коліщатко робить повний оберт від 0 до 9, автоматично починає рухатись друге коліщатко. Якщо і друге коліщатко доходить до цифри 9, починає обертатися третє і так далі. Машина Паскаля могла лише додавати та віднімати.

1673 року німецький математик Готфрід Вільгельм фон Лейбніц сконструював свою обчислювальну машину. На відміну від Паскаля, Лейбніц використав у своїй машині циліндри, а не коліщатка та приводи. На циліндри було нанесено цифри. Кожен циліндр мав дев'ять рядків виступів та зубців. При цьому перший ряд мав один виступ, другий ряд — два виступи і так до дев'ятого ряду, який мав відповідно дев'ять виступів. Циліндри з виступами були пересувними, оператор надавав їм певного положення.

Машина Лейбніца, на відміну від підсумовуючої машини Паскаля, була значно складнішою за конструкцією. Вона була здатна виконувати не тільки додавання та віднімання, але й множення, ділення та обчислювання квадратного кореня. [10]

В історії не вказано точно хто ж перший винайшов комп’ютер. Але все ж таки вважається, що першим розробив та виконав комп’ютер Леонардо да Вінчі. Потім вдосконалив його Шикард, Блез Паскаль, Готфрід Вільгельм фон Лейбніц та інші.

1.2 Обчислювальні машини XIX століття

Винахід першої програмованої обчислювальної машини належить видатному англійському математику Чарльзу Бебіджу (1830 р.). Він присвятив майже все своє життя цій праці, але, на жаль, через проблеми з фінансуванням Беббідж так і не створив діючу модель. Бебідж назвав свій винахід "Аналітична машина". Це був перший комп’ютер загального призначення. За планом машина мала діяти завдяки силі пару. При цьому вона була б здатна сприймати команди, виконувати обчислення та видавати необхідні результати у надрукованому вигляді. Програми в свою чергу мали кодуватися та переноситись на перфокарти. Ідея використання перфокарт була запозичена Бебіджем у французького винахідника Жозефа Жаккара (кінець XVIII ст.). Для контролю ткацьких операцій Жаккар використовував отвори, пробиті в картках. Картки з різним розташуванням отворів давали різні візерунки на плетінні тканини. По суті, Бебідж був першим, хто використав перфокарти стосовно обчислювальних машин.

У своїй машині Бебідж використав також технологію обчислень, запропоновану наприкінці XVIII сторіччя французьким вченим Гаспаром де Проні. Він розділив обчислення на три етапи: розробка чисельного методу, створення програми послідовності арифметичних дій, проведення обчислень шляхом арифметичних операцій над числами згідно зі створеною програмою.

В цей же час почалося його співробітництво з Адою Лавлейс— дочкою видатного англійського поета лорда Байрона. Саме вона переконала Бебіджа у необхідності використання у його винаході двійкової системи обчислення замість десяткової. Ада Августа Лавлейс  відома як перша в світі жінка-програміст. Вона зробила опис ранньої версії обчислювального пристрою загального призначення Чарльза Беббіджа, обчислювальної машини, склала першу у світі програму (для цієї машини), ввела у вжиток терміни «цикл» і «робоча комірка». Вона також розробила принципи програмування, що передбачали повторення послідовності команд та виконання цих команд за певних умов. Ці принципи використовуються і в сучасній обчислювальній техніці. У пам’ять про Аду Лавлейс назвали розроблену в 1980 році мову АДА – одну з універсальних мов програмування.[7]

Чарлз Бебідж вперше висловив ідею використання перфокарт в обчислювальній техніці, але реалізовано цю ідею було тільки 1887 року Германом Холерітом. Його машина була призначена для обробки результатів перепису населення США. Також Холеріт уперше застосував для організації процесу обчислення електричну силу.

Картки використовувались для кодування даних перепису, при цьому на кожну людину була заведена окрема картка. Кодування велося за допомогою певного розташування отворів, що пробивалися в картці по рядках та колонках. Наприклад, отвір, що був пробитий в третій колонці та четвертому рядку, міг означати, що людина одружена. Коли картка, що мала розмір банкноти в один долар, пропускалася крізь машину, вона прощупувалась системою голок. Якщо навпроти голки з'являвся отвір, то голка проходила крізь нього і доторкалася до металевої поверхні, що була розташована під карткою. Контакт, який відбувався при цьому, замикав електричний ланцюг, завдяки чому до результату обчислення додавалася одиниця. [9]

1.3 Перші електронно-обчислювальні машини

Перші електронні комп'ютери з'явилися в першій половині XX ст. На відміну від попередніх, вони могли виконувати задану послідовність операцій за програмою, що була задана раніше, або послідовно розв'язувати задачі різних типів. Перші комп'ютери були здатні зберігати інформацію в спеціальній пам'яті.

1934 року німецький студент Конрад Цузе, який працював над дипломним проектом, вирішив створити у себе вдома цифрову обчислювальну машину з програмним управлінням та з використанням (вперше в світі) двійкової системи числення. 1937 року машина 21 (Цузе 1) запрацювала. Вона була 22-розрядною, з пам'яттю на 64 числа і працювала на суто механічній (важільній) базі.

Необхідність у швидких та точних обчисленнях особливо зросла під час Другої світової війни (1939—1945 рр.), перш за все, для розв'язання задач балістики, тобто науки про траєкторію польоту артилерійських та інших снарядів до цілі.

1937 року американський вчений, болгарин за походженням, Джон Атанасов вперше запропонував ідею використання електронних ламп як носіїв інформації.

В 1942—1943 роках в Англії була створена за участю Алана Тьюрінга обчислювальна машина "Колос". В ній було 2000 електронних ламп. Машина призначалася для розшифрування радіограм німецького вермахту. "Колос" вперше в світі зберігав та обробляв дані за допомогою електроніки, а не механічно.

Машини Цузе та Тьюрінга були засекреченими, про їх створення стало відомо через багато років після закінчення війни.

1944 року під керівництвом професора Гарвардського університету Говарда Айкена було створено обчислювальну машину з автоматичним керуванням послідовністю дій, відому під назвою Марк 1. Ця обчислювальна машина була здатна сприймати вхідні дані з перфокарт або перфострічок. Машина Марк 1 була електромеханічною, для зберігання даних використовувались механічні прилади (коліщатка та перемикачі). Машина Айкена могла виконувати близько однієї операції за секунду та мала величезні розміри: понад 15 м завдовжки та близько 2,5 м заввишки і складалася більш ніж із 750 тисяч деталей.

1946 року групою інженерів під керівництвом Джона Моучлі та Дж. Преспера Еккерта на замовлення військового відомства США було створено машину ЕНІАК, яка була здатна виконувати близько 3 тисяч операцій за секунду. За розмірами ЕНІАК був більшим за Марк 1: понад 30 метрів завдовжки, його об'єм становив 85 м3. Важив ЕНІАК 30 тонн. Замість тисяч механічних деталей Марка 1, в ЕНІАКу було використано 18 тисяч електронних ламп.

Суттєвий внесок у створення ЕОМ зробив американський математик Джон фон Нейман, що брав участь у створенні ЕНІАКа. Фон Нейман запропонував ідею зберігання програми в пам'яті машини. Такі ЕОМ були значним кроком уперед на шляху створення більш досконалих машин. Вони були здатні обробляти команди в різному порядку.

Перша ЕОМ, яка зберігала програми у пам'яті, дістала назву ЕДСАК (Electronic Delay Storage Automatic Calculator — електронний калькулятор з пам'яттю на лініях затримки). Вона була створена в Кембриджському університеті 1949 року. З того часу всі ЕОМ є комп'ютерами з програмами, які зберігаються у пам'яті.

1951 року в Києві під керівництвом С. Лєбєдєва незалежно було створено МЕОМ (Мала Електрична Обчислювальна Машина). 1952 року ним же було створено ШЕОМ (Швидкодіюча Електрична Обчислювальна Машина), яка була на той час кращою в світі та могла виконувати близько 8 тисяч операцій за секунду.

1951 року компанія Джона Моучлі та Дж. Преспера Еккерта створила машину UNIVAC (Universal Automatic Computer — універсальна автоматична обчислювальна машина). Перший екземпляр ЮНІВАКа було передано в Бюро перепису населення США. Потім було створено багато різних моделей ЮНІВАКа, які почали застосовуватися у різних сферах діяльності. Таким чином, ЮНІВАК став першим серійним комп'ютером. Крім того, це був перший комп'ютер, в якому замість перфострічок та карток було використано магнітну стрічку.

2. Покоління обчислювальної техніки

2.1 Перше покоління комп'ютерів

Такі комп'ютери, як ЕНІАК, ЕДСАК, ШЕОМ та ЮНІВАК являли собою лише перші моделі ЕОМ. Упродовж десятиріччя після створення ЮНІВАКа було виготовлено та введено в експлуатацію в США близько 5000 комп'ютерів.

Гігантські машини на електронних лампах 50-х років склали перше покоління комп'ютерів.

Z1 — обчислювальний пристрій, створений в 1938 році, німецьким інженером Конрадом Цузе. Це двійкова обчислювальна машина з введенням даних за допомогою клавіатури, в десятковій системі числення у вигляді чисел з плаваючою комою. Головною відмінністю від відомішої обчислювальної машини Z3 (1941 рік) була відсутність обчислення квадратного кореня. Закінчена машина розміщувалася на декількох зрушених разом столах у вітальні рідної домівки і займала близько 4 м її площі. Вага пристрою досягала 500 кг.

Z1 був двійковим механічним обчислювачем з електричним приводом і обмеженою можливістю програмування. Вводилися і виводилися дані в десятковій системі, у вигляді чисел з плаваючою комою. Введення команд і даних здійснювалося за допомогою клавіатури, зробленої на основі машинки, що пише, а вивід, — за допомогою маленької лампочной панелі. Пам'ять обчислювача організовувалася за допомогою конденсатора скла, що чергує шари, і металеві пластини. Така конструкція дозволяла зберігати 6422-бітових речових числа, кожне з яких складалося з 14-бітової мантиси і 8 біт, що відводилися під знак і порядок. У тому ж 1936 року це унікальне рішення було запатентоване Конрадом Цузе. Процесор мав 222-бітових регістра. Тактова частота складала 1 Гц, швидкодія — в середньому 1 множення за 5 сек. Машина була забезпечена пристроєм читання перфокарт і приводилася в рух мотором потужністю в 1кіловат.

Множення і ділення виконувалися за допомогою тієї ж процедури повторних складань і віднімань, яку використовував ще Блез Паскаль в конструкції своєї машини, що підсумовує. Прочитувані інструкції програми тут же виконувалися, не завантажуючись в пам'ять.

Z1 працював ненадійно із-за недостатньої точності виконання складових частин. Для виконання розрахунків в практичному вживанні машина не використовувалася. Проте, Цузе був задоволений роботою свого дітища. Саме на основі Z1 їм були надалі розроблені інші програмовані машини Z2, Z3, Z4 і так далі.

В ході бомбардувань Берліна в роки Другої світової війни оригінальна машина разом зі всією документацією була знищена. У 1987—1989 роках Цузе відтворив Z1. Закінчена модель налічувала 30 тисяч компонентів, коштувала 800 тисяч німецьких марок і зажадала для своєї збірки праці 4-х ентузіастів (включаючи самого Цузе). Фінансування проекту забезпечувалося компанією Siemens поряд з п'ятьма іншими компаніями. [5]

Z2 — вдосконалена версія програмованого обчислювача Z1, створеного німецьким інженером Конрадом Цузе. Машина була закінчена в 1939 році. На відміну від свого попередника, в Z2 для введення даних вперше була використана перфорована стрічка, роль якої виконувала 35міліметрова фотоплівка. Цузе також зумів добитися збільшення надійності обчислювача, замінивши механічні перемикачі на телефонні реле. Обчислювачі Z1 і Z2 стали прелюдією до створення Цузе в 1941 році першої програмованої обчислювальної машини Z3.

Z3 — програмована обчислювальна машина, що володіє всіма властивостями сучасного комп'ютера. Створена німецьким інженером Конрадом Цузе і представлена увазі науковій громадськості 12 травня 1941 року. Сьогодні багато хто вважає його першим реально діючим програмованим комп'ютером, хоча головною відмінністю від першої машини Цузе Z1 (1938) було можливість обчислення квадратного кореня. Машина була двійковим обчислювачем з обмеженим програмуванням, виконаним на основі телефонних реле. На таких же реле було реалізовано і пристрій зберігання даних. Їх загальна кількість складала близько 2200. Порядок обчислень можна було вибрати заздалегідь, проте умовні переходи і цикли були відсутні. У 1942 році, разом з австрійським інженером-електриком Хельмутом Шрайером, Цузе запропонував створити на базі Z3 комп'ютер нового типа, замінивши телефонні реле вакуумними електронними лампами, що повинне було сильно підвищити надійність і швидкодію машини. Через деякий час в інших країнах також з'явилися перші обчислювальні машини. Це були комп'ютери "Марк I", "Колос" і "ЕНІАК". У той час, оригінальна машина Конрада Цузе займала значно менше місця і коштувала набагато дешевше, ніж створений двома роками пізніше американський комп'ютер "Марк I". Z3 використовувався для розрахунків, пов'язаних з конструюванням літаків і керованих ракет німецьким дослідницьким інститутом аеродинаміки (Aerodynamische Versuchsanstalt). Єдиний зразок комп'ютера разом з іншими ранніми розробками Цузе був знищений під час нальоту союзницької авіації в 1945 році. У 1960 році компанією Zuse KG була виконана реконструкція Z3. У 1967 році ця модель була виставлена і привернула велику увагу відвідувачів монреальської виставки, а в сьогодення вона розміщена в експозиції "Німецького музею" в Мюнхені. Z4 — обчислювальна машина німецького інженера Конрада Цузе, створена їм на основі досвіду розробки першого програмованого комп'ютера Z3. Цузе почав створювати Z4 в кінці Другої світової війни. Його лабораторія, разом з більшою частиною розробленого устаткування, загинула при нальоті авіації союзників.

Проте, майже закінчений Z4 уцілів. Ледве раніше він був відправлений з Берліна до Геттінген, а потім занурений на підводу і перевезений Цузе в безпечне місце в баварському селі Хинтерштейн. Комп'ютер був захований в підвалі будинку і прихований під назвою "Versuchsmodel 4" (V4), що переводиться як "пробна модель № 4".

Із-за асоціації абревіатури V4 з назвами ракет V1 (Фау-1) і V2 (Фау-2), що знайшли їх британські і американські військові були здивовані тим, що вселяючий страх V4 виявилася всього лише скупченням механічних деталей і частин.

Після закінчення війни Цузе продовжив виготовлення комп'ютера. Z4 був закінчений у вересні 1950 року, після чого він був куплений Швейцарським федеральним інститутом технологій (ETH, Цюріх). У той час це була єдина працююча обчислювальна машина в континентальній Європі. Z4 став також першим комп'ютером в світі, який був проданий. У цьому він на п'ять місяців випередив англійський "Марк I" і на десять - американський UNIVAC.

Комп'ютер експлуатувався в ETH до 1955 року, після чого був переданий у Французький аеродинамічний науково-дослідний інститут недалеко від Базеля, де працював до 1960 року. У роки війни для роботи з комп'ютером Z4 Цузе розробив також першу в світі високорівневу мову програмування - Планкалкюль (план числення).

До першого покоління радянських комп'ютерів відносяться лампові ЕОМ - "БЕСМ-2", "Стріла", "М-2", "М-3", "Мінськ", "Урал-1", "Урал-2", "М-20". [10]

 

2.2 Друге покоління комп'ютерів

Друге покоління комп'ютерів з'явилося на початку 60-х років, коли на зміну електронним лампам прийшли транзистори. Винайдені 1948 р. транзистори, як виявилось, були спроможні виконувати всі ті функції, які до цього часу виконували електронні лампи. Але при цьому вони були значно менші за розмірами та споживали набагато менше електроенергії. До того ж транзистори дешевші, випромінюють менше тепла та більш надійні, ніж електронні лампи. І все ж таки найдивовижнішою властивістю транзистора є те, що він один здатен виконувати функції 40 електронних ламп та ще й з більшою швидкістю, ніж вони. В результаті швидкодія машин другого покоління виросла приблизно в 10 разів порівняно з машинами першого покоління, обсяг їх пам'яті також збільшився. Водночас із процесом заміни електронних ламп транзисторами вдосконалювалися методи зберігання інформації. Магнітну стрічку, що вперше було використано в ЕОМ ЮНІВАК, почали використовувати як для введення, так і для виведення інформації. А в середині 60-х років набуло поширенне зберігання інформації на дисках.

У 1964 році фірма IBM оголосила про створення шести моделей сімейства IBM 360, що стали першими комп'ютерами другого покоління. Моделі мали єдину систему команд і відрізнялися один від одного об'ємом оперативної пам'яті і продуктивністю. При створенні моделей сімейства використовувалися ряд нових принципів, що робило машини універсальними і дозволяло з однаковою ефективністю застосовувати їх як для вирішення завдань в різних галузях науки і техніки, так і для обробки даних у сфері управління і бізнесу. IBM System/360 (S/360) — це сімейство універсальних комп'ютерів класу мейнфреймов. Подальшим розвитком IBM/360 сталі системи 370, 390, z9 і zSeries. У СРСР IBM/360 була клонована під назвою ЄС ЕОМ. Вони були програмно сумісні зі своїми американськими прообразами. Це давало можливість використовувати західне програмне забезпечення в умовах нерозвиненості вітчизняної "індустрії програмування".

До другого покоління радянських комп'ютерів відносяться напівпровідникові малі ЕВМ "Наїрі" і "Мир", середні ЕОМ для наукових розрахунків і обробки інформації із швидкістю530 тисяч операцій в секунду "Мінськ-2", "Мінськ-22", "Мінськ-32", "Урал-14", "Раздан-2", "Раздан-3", "БЕСМ-4", "М-220" і ЕОМ, що управляють, "Дніпро", "ВНІЇЕМ-3", а також надшвидкодіюча БЕСМ-6 з продуктивністю 1 млн операцій в секунду.

2.3Третє покоління комп'ютерів

Поява інтегрованих схем започаткувала новий етап розвитку обчислювальної техніки - народження машин третього покоління. Інтегрована схема, яку також називають кристалом, являє собою мініатюрну електронну схему, витравлену на поверхні кремнієвого кристала площею приблизно 10 мм2. Перші інтегровані схеми (ІС) з'явилися 1964 року. Поява інтегрованих схем означала справжню революцію в обчислювальній техніці. Одна така схема здатна замінити тисячі транзисторів, кожний з яких у свою чергу уже замінив 40 електронних ламп. Інакше кажучи, один крихітний, але складний кристал має такі ж самі обчислювальні можливості, як і 30-тонний ЕНІАК!

Швидкодія ЕОМ третього покоління збільшилася приблизно в 100 разів порівняно з машинами другого покоління, а розміри набагато зменшилися. Комп'ютери третього покоління на інтегральних мікросхемах з'явилися в СРСР в другій половині 1960-х років. Були розроблені Єдина Система ЕОМ (ЄС ЕОМ) і Система Малих ЕОМ (СМ ЕОМ) і організовано їх серійне виробництво. Як вже указувалося вище, ця система була клоном американської системи IBM/360.

 

2.4 Четверте покоління комп'ютерів

Четверте покоління — ЕОМ на великих інтегрованих схемах.

Розвиток мікроелектроніки дав змогу розміщати на одному кристалі тисячі інтегрованих схем. Так, 1980 р. центральний процесор невеликої ЕОМ вдалося розташувати на кристалі площею 1,6 см2. Почалася епоха мікрокомп'ютерів. Швидкодія сучасної ЕОМ в десятки разів перевищує швидкодію ЕОМ третього покоління на інтегральних схемах, в 100 разів - швидкодію ЕОМ другого покоління на транзисторах та в 10 000 разів швидкодію ЕОМ першого покоління на електронних лампах.

2.5 П’яте покоління комп'ютерів

Нині створюються та розвиваються ЕОМ п'ятого покоління - ЕОМ на надвеликих інтегрованих схемах. Ці ЕОМ використовують нові рішення у архітектурі комп'ютерної системи та принципи штучного інтелекту.

 

 

3. Цифрові технології майбутнього.

Як розвиватимуться комп’ютери в найближчі 100 років? Сказати, що комп’ютери розвиваються неймовірно швидко — нічого не сказати. Ще в 1965 році Гордон Мур відзначив, що число транзисторів, які можна вмістити на кремнієвий чіп, щороку збільшується вдвічі. Ці маніакальні темпи трохи сповільнилися — тепер подвоєння відбувається приблизно раз на два роки. Якщо припустити, що виробництво мікропроцесорів буде жити за законом Мура, обчислювальна потужність наших комп’ютерів повинна подвоюватися кожні два роки. Виходить, через 100 років комп’ютери будуть в 1 125 899 906 842 624 рази потужнішими, ніж сьогодні. Це важко навіть уявити!

Комп'ютери майбутнього будуть усюди і ніде. Як очікується, вже у 2030 році комп’ютери супроводжуватимуть людство геть усюди. Користувачі їх майже не помічатимуть, але насправді без них нічого не функціонуватиме. Комп’ютери майбутнього будуть усюди і одночасно ніде. «Комп’ютери ставатимуть дедалі меншими, таким чином вони поступово зникатимуть з поля зору людей».[8] Інакше кажучи, йдеться про цілі інтегровані системи й мережі. Малесенький, але надпотужний комп’ютер, у майбутньому дедалі більше вмонтовуватиметься в повсякденні предмети, які нас оточують, і приховано керуватиме нашим життям. Навряд чи хтось замислюється над тим, що вже нині в нашому автомобілі вмонтовано понад 80 мініатюрних комп'ютерів, яких водій взагалі не помічає.

Як планується, в найближчому майбутньому комунікація між людиною та комп'ютером зробить революційний стрибок. Інформації та команди віддаватимуться вже не через клавіатуру або комп'ютерну мишку, а через нові, значно інтерактивніші точки дотику фізичного та віртуального світів. Приміром, невеликого олівця в руці має бути достатньо, аби з його допомогою увімкнути або вимкнути опалення чи пральну машинку. Спеціальна відеокамера слугує сенсором, який зчитує інформацію про рухи людини і передає на комп'ютер у вигляді команди. А якщо технології відеокамер розвиватимуть і далі, то й олівець як сигнальний інструмент вже не буде потрібним – людина зможе керувати прихованими комп'ютерами лише пальцями або вигуками.

Більше того, скоро комп’ютери навчаться також говорити між собою. Приміром, «розумний» будинок буде припасовувати освітлення, опалення та систему провітрювання під поведінку мешканця. Завдяки сенсорам опалюватимуться лише ті кімнати, в яких щось рухається. Прилади краще обмінюватимуться інформацією один з одним і будуть здатні виконати ще більше складних завдань. Фізичний та віртуальний світи дедалі більше зливатимуться. Але те, що програмістам видається вельми привабливим, для захисників даних звучить як справжнє жахіття. Адже якщо всі сфери людського життя будуть оцифровані, то людське існування буде цілком прозоре для машин й не залишиться місця для приватної сфери.

 Програмне забезпечення поступово стає все більш витонченим, а це означає, що комп'ютери теж повинні не відставати і розвиватися в плані потужності і можливостей. Тому багатоядерні комп'ютери продовжують стрімко розвиватися. По мірі розвитку технологій, ми зможемо побачити десятки або навіть сотні ядер в одному пристрої, можливо, навіть в кишенькових пристроях. Високопродуктивні машини будуть використовувати тисячі або навіть мільйони ядер для обробки дуже складного програмного забезпечення.

Через пандемію короновірусної хвороби, багато організацій сьогодні вдаються до дистанційної роботі, але це може стати набагато більш поширеним явищем через прогрес. Поступово робота буде ставати все більш мобільною. Працівники будуть відчувати набагато менше тиску і зможуть виконувати свою роботу поза офісом навіть з більшою ефективністю.

 

 

 

 

 

Висновки

Неможливо точно сказати х тож першим винайшов комп’ютер. Проте Леонардо да Вінчі все ж таки вважається першим розробником ЄОМ. Вже після смерті Леонардо да Вінчі світові пред’явив свій винахід Вільгельм Жиккард. А після нього Блез Паскаль та Готфрід Вільгельм фон Лейбніц.

ЕОМ за багато століть пройшли декілька етапів розвитку. Та ці етапи діляться на декілька поколінь:

Перше покоління: гігантські машини на електронних лампах 50-х років.

Друге покоління комп'ютерів з'явилося на початку 60-х років, коли на зміну електронним лампам прийшли транзистори. Винайдені 1948 р.

Поява інтегрованих схем започаткувала новий етап розвитку обчислювальної техніки — народження машин третього покоління. Інтегрована схема, яку також називають кристалом, являє собою мініатюрну електронну схему, витравлену на поверхні кремнієвого кристала площею приблизно 10 мм2. Перші інтегровані схеми (ІС) з'явилися 1964 року

Четверте покоління — ЕОМ на великих інтегрованих схемах.

Нині створюються та розвиваються ЕОМ п'ятого покоління — ЕОМ на надвеликих інтегрованих схемах. Ці ЕОМ використовують нові рішення у архітектурі комп'ютерної системи та принципи штучного інтелекту.

Проте і на цьому людство не зупиняє розвиток ЕОМ. В майбутньому це будуть ще більш вдосконалені машини, ще більш швидкі, ще більш зручні у використанні та будуть дивувати нас своїми можливостями.


Глосарій

 п / п

Поняття

Визначення

1

Інформатика

Наука про способи отримання, накопичення, зберігання, перетворення, передачі і використанні інформації.

2

Обчислювальна машина

Механізм, електромеханічне або електронний пристрій, призначений для виконання математичних операцій.

3

Паскалінка

Підсумовуються машина, створена Б. Паскалем.

4

Рахункова машина (Лейбніц)

Арифметичний прилад для додавання і множення.

5

Програмування

Завдання послідовності арифметичних дій та визначення вихідних даних.

6

Машина Тьюрінга

Абстрактна машина, створена А. Тьюрінгом.

7

Алгебра Буля

Алгебра логіки, розроблена Д. Булем.

8

Перфокарта

Носій інформації, призначений для використання в системах автоматичної обробки даних.

9

Двійкова система числення

Це позиційна система числення з основою 2.

10

Плаваюча кома

Форма подання дробових чисел, в якій число зберігається у формі мантиси та показника ступеня.

 


Список використаних джерел:

1. Журнал "інформатика", листопад, 2002 №41. 185 с.

2. Знакомьтесь компьютер; Пер. с англ. К. Г. Батаева; Под ред. и с пред. В. М. Курочкина — Москва : Мир, 1989. — 240 с., ил. ISBN 5-03-001147-1

3. Інформатика: Навч. посібн. для 10-11 кл. середн . загальноосвітн. шкіл / І. Т. Зарецька, Б. Г. Колодяжний, А. М. Гуржій, О. Ю. Соколов. – К.: Форум, 2001. – 496 с. : іл.

4. Інформатика: екперим. Підручник для 10 кл. / Під редак. М. В. Морзе. – К. : Вид. Корбуш, 2008. – 592 с. : іл.

5. Язык компьютера; Пер. с англ. С. Е. Морковина и В. М. Ходукина; Под ред. и с пред. В. М. Курочкина — М.: Мир, 1989. — 240 с., ил.

6. community.livejournal.com

7. http://adalavleys.blogspot.com/2017/04/5.html

8. https://sites.google.com/site/komputermajbutnogo12

9. uk.wikibooks.org

10. wikipedia.org

 

1

 

docx
Додано
18 листопада 2020
Переглядів
16698
Оцінка розробки
Відгуки відсутні
Безкоштовний сертифікат
про публікацію авторської розробки
Щоб отримати, додайте розробку

Додати розробку