Задача 1 Знайти площу повної поверхні правильної чотирикутної призми, сторона основи якої дорівнює a, а висота – H.
Номер слайду 3
Розв'язання: Площа повної поверхні правильної призми: Sn=2 Soc+Sb. В основі правильної чотирикутної призми лежить квадрат зі стороною a. Тому площа основи: Soc=a2,периметр основи: Poc=4a. Площа бічної поверхні: Sb=Soc•H=4a. H. Площа повної поверхні правильної чотирикутної призми: Sn=2 Soc+Sb=2a2+4a. H=2a(a+2 H). Відповідь: 2a(a+2 H) Відповідь: Д
Номер слайду 4
Задача 2 В основі прямої призми лежить рівнобічна трапеція з основами 4 см і 10 см і бічною стороною 5 см. Бічне ребро призми дорівнює 10 см. Обчислити повну поверхню призми.
Номер слайду 5
Розв'язання: Площа повної поверхні прямої призми: Sп=2 Soc+Sb. В основі прямої призми лежить рівнобічна трапеція з основами AD=4 см і BC=10 см і бічною стороною AB=CD=5 см. Знайдемо висоту DL трапеції.Із прямокутного трикутника DLC (∠DLC=90, бо DL⊥BC, CD=5 см – гіпотенуза і CL=3 см – катет) знайдемо катет DL. DL2=CD2-CL2, звідси
Номер слайду 6
Продовження. Площа основи – трапеції ABCD: Периметр основи: Poc=AB+BC+CD=2•5+10+4=24 см. Площа бічної поверхні: Sб=Poc•h=24•10=240 см2. Площа повної поверхні прямої призми: Sп=2 Soc+Sb=2•28+240=296 см2. Відповідь: Д
Номер слайду 7
Задача 3 У правильній чотирикутній призмі площа діагонального перерізу дорівнює S. Визначити площу бічної поверхні.
Номер слайду 8
Розв'язання: Площа бічної поверхні правильної чотирикутної призми зі стороною основи a і висотою H обчислюють за формулою: Sб=Poc•H=4a. H. У правильній чотирикутній призмі діагональним перерізом є прямокутник ACC1 A1 зі сторонами діагоналі основи призми AC і висоти CC1=H. Діагональ основи правильної чотирикутної призми (квадрата ABCD):(Обчислюємо як довжину гіпотенузи AС прямокутного ΔABC (∠ABC=90)). Площа діагонального перерізу. Площа бічної поверхні правильної чотирикутної призми: Відповідь: В
Номер слайду 9
Задача 4 Діагональ правильної чотирикутної призми дорівнює 13 см, а діагональ бічної грані дорівнює 12 см. Знайти площу основи призми.
Номер слайду 10
Розв'язання: В основі правильної чотирикутної призми лежить квадрат зі стороною a, тому площу основи обчислимо за формулою: Soc=a2. У правильної призми бічне ребро перпендикулярне до площини основи CC1⊥ (ABC), тому CC1⊥BC. Звідси CC – перпендикуляр опущений з вершини C1 на площину основи (на квадрат ABCD), BC1 – похила, яка опущена з цієї ж вершини C1 на площину основи, BC – проекція похилої BC1. Оскільки основа – квадрат ABCD, то AB⊥BC. За теоремою «Про три перпендикуляри» маємо AB⊥BC1, тому ΔABC1 – прямокутний (∠ABC1=90). З прямокутного трикутника ABC1 (∠ABC1=90), в якому BC<1=12 см – катет (діагональ бічної грані) і AC1=13 см – гіпотенуза (діагональ призми), за теоремою Піфагора знайдемо катет AB=a – довжину сторони квадрата:
Номер слайду 11
Продовження. Площа основи правильної чотирикутної призми – квадрата ABCD: Soc=a2=52=25 см2. Відповідь: Б