Тема уроку. Квадратична функція, її властивості і графік
Номер слайду 8
квадратичною функцією…….
Номер слайду 9
Функція виду у = ах2+bх+с, де а, b, c – деякі числа, а≠0, х – незалежна змінна, називається квадратичною функцією -у = 2х3 -5х +7у = 4х2 - 5ху = -х2 –2х у = 3х2
Номер слайду 10
Графіком квадратичної функції……
Номер слайду 11
Графіком квадратичної функції є парабола , гілки якої напрямлені вгору (якщо а>0) або вниз (якщо а<0). Приклади:у=2х²+4х-1 – графіком є парабола, вітки якої напрямлені вгору ( а=2, а>0).у= -7х²-х+3 – графіком є парабола, вітки якої напрямлені вниз ( а=-7, а<0). у 0 х у 0 х
Номер слайду 12
Вершина параболи…….
Номер слайду 13
Вершина параболи Для того, щоб знайти вершину параболи, необхідно скористатись наступними формулами хв = -b2a ув = f(х)(хв ; ув )yх021-2-11234а>0а<0 style.colorfillcolorfill.typestyle.colorfillcolorfill.typestyle.colorfillcolorfill.type
Номер слайду 14
Властивості квадратичної функції у=ах2 +bx +c1) Область визначення D(y) :yyxx00(-8; 8)8(-;8)Зміст
Номер слайду 15
2) Область значень Е(у) :ууххуbybyb;8)(-8;уb00 Зміст
Номер слайду 16
Проміжки зростання та спаданняxxbbyyxxспадає при х є (-∞; хb]зростає при х є [xb; +∞)зростає при х є (-∞; хb]спадає при х є [xb; +∞)Зміст
Номер слайду 17
Найбільше та найменше значенняyyyxx00ybxbybxbнайменше :найбільше : не існуєybнайменше : не існуєнайбільше :yb. Зміст
Номер слайду 18
Якщо D>0 ,то ми будемо мати 2 дійсних-різних кореніх1= х2=Якщо D=0, то ми матимемо 2 дійсних-рівних кореніх1,2=графік функції тільки в одній точці перетинає вісь 0х (дотикається до вісі 0х) і точка дотику буде в вершині параболи. Якщо D<0, то дійсних коренів квадратний тричлен не матиме, графік функції не перетинає вісь 0х в жодній точці АВС
Номер слайду 19
ххх= х1122 АВСD>0 D=0 D<0а>0
Номер слайду 20
а<0 АВСххх1122 D>0 D=0 D<0= х
Номер слайду 21
Для кожної з функцій, графіки яких зображені, виберіть відповідну умову та зробіть позначку «+». Тест №1 D>0;a<0 D<0;a>0 D<0;a<0 D=0;a>0
Номер слайду 22
Побудуємо графік функції у = х² - 4х + 3 Застосовуючи графік знайти:1) Область визначення,2) Область значень,3) Проміжки зростання і спадання функції
Номер слайду 23
Розглянемо властивості нашої функції y = x 2- 4x + 3 Область визначення : D(у) є ( - ; ) 882. Область значень : Е(у) є [- 1 ; )83. Графік функції спадає при x є ( - ; 2 ] зростає при x є [2 ; )88 Зміст
Номер слайду 24
Властивості:1. Область визначення D(f)2. Область значень Е(f) 3. Нулі функції4. Проміжки знакосталості у>0, у<0 5. Проміжок зростання Проміжок спадання6. Найбільше (найменше) значення функції уmax (уmin ) при х=
Номер слайду 25
Побудуйте графік функції y= -x2+6x-5. Застосовуючи графік знайти:1) Область визначення,2) Область значень,3) Проміжки зростання і спадання функції
Номер слайду 26
Побудуйте графік функції y=-x2+6x-5. За допомогою графіка функції знайдіть:а) множину значень функції;б) проміжки зростання функції. Зміст
Номер слайду 27
Домашнє завдання. Опрацювати п.12 Виконати завдання зі слайду 29
Номер слайду 28
Побудуйте графіки функцій 1)у = -х² + 2х – 32) y= x2 + 6x – 5 Застосовуючи графік, дайте відповідь на наступні питання: 1. Область визначення D(f)2. Область значень Е(f) 3. Нулі функції4. Проміжки знакосталості у>0, у<0 5. Проміжок зростання Проміжок спадання6. Найбільше (найменше) значення функції уmax (уmin ) при х=.