Синус, косинус, тангенс гострого кута прямокутного трикутника

Про матеріал
До вашої уваги презентація, яка дозволить сформувати нові знання про тригонометричні співвідношення для прямокутного трикутника.
Зміст слайдів
Номер слайду 1

Співвідношення між сторонами і кутами прямокутного трикутника.

Номер слайду 2

Прямокутний трикутник ABC (∠C = 90°). катет BC називають протилежним куту A;катет AC — прилеглим до цього кута. О з н а ч е н н я. С и н у с о м гострого кута прямокутного трикутника називають відношення протилежного катета до гіпотенузи. Синус кута A позначають так: sin A (читають: «синус А»). Для гострих кутів A і B прямокутного трикутника ABC маємо:

Номер слайду 3

KМN Якщо гострий кут одного прямокутного трикутника дорівнює гострому куту другого прямокутного трикутника, то синуси цих кутів рівнісинус гострого кута залежить тільки від величини цього кутаsin B = sin N sin C = sin K sin A = sin M

Номер слайду 4

О з н а ч е н н я. К о с и н у с о м гострого кута прямокутного трикутника називають відношення прилеглого катета до гіпотенузи. Косинус кута A позначають так: cos A (читають: «косинус А»). Для гострих кутів A і B прямокутного трикутника ABC можна записати:

Номер слайду 5

Зазначимо, що катет прямокутного трикутника менший від його гіпотенузи, а тому синус і косинус гострого кута менші від 1 AC

Номер слайду 6

О з н а ч е н н я. Т а н г е н с о м гострого кута прямокутного трикутника називають відношення протилежного катета до прилеглого Тангенс кута A позначають так: tg A (читають: «тангенс А»). Для гострих кутів A і B прямокутного трикутника ABC можна записати:

Номер слайду 7

косинус і тангенс гострого кута залежать тільки від величини цього кута

Номер слайду 8

Кожному гострому куту a відповідає єдине число — значення синуса (косинуса, тангенса) цього кута. Тому залежність значення синуса (косинуса, тангенса) гострого кута від величини цього кута є функціональною. Функцію, яка відповідає цій залежності, називають тригонометричною. y=sinх , y= cosх , y = tgх — тригонометричні функції, аргументами яких є гострі кути.

Номер слайду 9

З давніх часів люди складали таблиці наближених значень тригонометричних функцій з деяким кроком, один раз обчислюючи значення тригонометричних функцій для конкретного аргументу. Потім ці таблиці широко використовували в багатьох галузях науки й техніки. У наш час значення тригонометричних функцій гострих кутів зручно знаходити за допомогою мікрокалькулятора

Номер слайду 10

Тангенс гострого кута можна виразити через синус і косинус цього самого кута. Розглянемо прямокутний трикутник Запишемо: Отже, одержуємо таку формулу:

Номер слайду 11

За теоремою Піфагора a𝟐+b𝟐=c𝟐.  Обидві частини цієї рівності поділимо на c2 Маємо: Ураховуючи, щоотримаємо: Прийнято записувати: Цю формулу називають основною тригонометричною тотожністю

Номер слайду 12

Номер слайду 13

О з н а ч е н н я. К о т а н г е н с о м гострого кута прямокутного трикутника називають відношення прилеглого катета до протилежного Котангенс кута A позначають так: сtg A (читають: «котангенс А»). Для гострих кутів A і B прямокутного трикутника ABC можна записати:сtg A=АСВС , сtg В=ВСАС  

Номер слайду 14

Котангенс гострого кута залежать тільки від величини цього кутасtg α=𝑏𝑎, сtg β=𝑎𝑏  

Номер слайду 15

сtg α=𝑏𝑎  𝒄𝒐𝒔𝜶𝒔𝒊𝒏𝜶 = 𝒃𝒄𝒂𝒄 = 𝒃𝒂  ctgα=𝒄𝒐𝒔𝜶𝒔𝒊𝒏𝜶   𝒄𝒐𝒔𝜶𝒔𝒊𝒏𝜶 = 𝒃𝒄𝒂𝒄 = 𝒃𝒂=ctgα 

Номер слайду 16

сtg α= 𝑏𝑎  сtg α∙tgα= сtg α∙tgα=1 сtg α∙tgα= 𝒃𝒂 ∙ 𝒂𝒃=  сtg α∙tgα= 𝒃𝒂 ∙ 𝒂𝒃 =1 

Номер слайду 17

сtg α=𝑏𝑎, сtg β=𝑎𝑏  ctg(90𝒐- α)=tg α tg(90𝒐- α)=ctg α 

Номер слайду 18

Розглянемо прямокутний рівнобедрений трикутник ABC (∠C = 90°), у якому AC = BC = a. Маємо: За означеннямзвідси. Оскільки ∠A = 45°, то

Номер слайду 19

Розглянемо прямокутний трикутник ABC,у якому ∠C = 90°, ∠A = 30°. Нехай BC = a. Тоді за властивістю катета, який лежить проти кута 30°, отримуємо, що AB = 2a.Із теореми Піфагора випливає, що. AC2 = AB2 – BC2. Маємо: AC2 = 4a2 – a2 = 3a2; AC =a3 . Звідси знаходимо:

Номер слайду 20

Значення синуса, косинуса тангенса і котангенса для кутів 30°, 45° і 60°корисно запам’ятати.

Номер слайду 21

Номер слайду 22

Д/З

Середня оцінка розробки
Структурованість
5.0
Оригінальність викладу
5.0
Відповідність темі
5.0
Загальна:
5.0
Всього відгуків: 1
Оцінки та відгуки
  1. Зуб Наталия
    Загальна:
    5.0
    Структурованість
    5.0
    Оригінальність викладу
    5.0
    Відповідність темі
    5.0
pptx
Пов’язані теми
Геометрія, 8 клас, Презентації
Додано
30 березня
Переглядів
1677
Оцінка розробки
5.0 (1 відгук)
Безкоштовний сертифікат
про публікацію авторської розробки
Щоб отримати, додайте розробку

Додати розробку