Урок "Розв'язування задач по темі: "Площі паралелограма, трикутника, трапеції"."

Про матеріал
Урок узагальнення і систематизації знань учнів. На уроці застосовуються набуті знання на практиці, формуються соціальна і комунікативна компетенції, компетентність продуктивної творчої діяльності.
Перегляд файлу

Тема уроку:   Розв’язування задач по темі : «Площі паралелограма, трикутника, трапеції».

Мета уроку: Узагальнити і систематизувати знання учнів, вдосконалювати вміння і навички знаходити площі паралелограма, трапеції і трикутника; застосовувати здобуті знання на практиці, аналізувати результати, робити відповідні узагальнення, порівняння, висновки; розвивати пам’ять, логічне та дивергентне мислення; виховувати інтерес до математики, увагу, самостійність; формувати вміння працювати, вміння висловлювати свою думку.

Тип уроку:  Узагальнення і систематизації;

Форма роботи:  колективна; індивідуальна; парна.

Очікувані результати: Вміння використовувати формули для обчислення площ паралелограма, трикутника, трапеції на продуктивно-операційному рівні.

Основні завдання:

  • Знати: формули для обчислення площ паралелограма, трикутника, трапеції;
  • Вміти: застосовувати їх для розв’язування прикладних задач.

 

№ п/п

Етапи уроку

Час

Методи і прийоми

І

Організаційний етап

2 хвилини

Прийом « рамки»

ІІ

Актуалізація опорних знань і умінь учнів

 5 хвилин

Інтелектуальна розминка

ІІІ

Узагальнення вмінь і навичок учнів з теми через розв’язування задач

10 хвилин

«Здивуй!»

ІV

 

 

Задачі за готовими малюнками

8 хвилин

Практичність теорії

V

Диференційовані завдання

15 хвилин

Робота в парах

VI

Рефлексія. Підсумок уроку

3-5 хвилин

«Напиши», прийом «рамки»

 

 

Хід уроку:

 I.      Організаційний момент

Девіз уроку:   Думаємо колективно,

                        Працюємо оперативно,

                        Сперечаємося доказово,

                        Це для всіх обов’язково.

Навчання мистецтву розв’язувати задачі – це виховання волі.      (Д.Пойа)

  1. Актуалізація опорних знань і умінь учнів
  1. Сформулювати властивості (аксіоми) площ.
  2. Записати всі відомі формули для обчислення площ фігур.
  3. Які одиниці вимірювання площ ви знаєте?
  4. Знайти зайву фігуру:  

            

 

 

 

 

          1.                                                2.                                                     3.         

(2.- присутня фігура, яка не є чотирикутником.)

  5)  Виключити зайвий рисунок: 

 

                                 

        а.                    б.                 в.                  г.                     д.                     е.

(д – фігура, які мають різні площі)

  1. Виключити зайвий запис:
                (5мм)

 

  1. Серед запропонованих фігур знайти ті, які мають однакову площу.

(однакову площу мають  фігури 1, 3, 4)

 ІІІ.     Узагальнення вмінь та навичок учнів з теми через розв’язування задач.

      Вміння розв’язувати математичні задачі часто полегшує життя, а іноді й зберігає його.

      В оповіданні Л. Толстого «Чи багато людині землі потрібно» розповідається про селянина Пахома, який мріяв про власну землю.

     Завдання, яке поставив Пахому старшина, полягало в тому, що Пахом отримає стільки землі, скільки обійде, але до заходу сонця він має повернутися в початкове положення. Та не судилося господарювати на цій землі Пахому, він помер . А якби знав математику, то можливо і залишився б господарювати. Давайте ми прослідкуємо шлях Пахома і з’ясуємо чи правильно він вибрав свій маршрут.

                                                          Шлях Пахома

Завдання І.

  1. Обчисліть площу ділянки землі і периметр:
  1.        

    А якби 40 верст Пахом пройшов би по сторонах квадрата, яку площу він би обійшов?

а = 10 верст, S = 100 (кв. верст)

    Завдання ІІ.

Розгляньте таблицю і зробіть висновок:

Периметр

 

Р

40

Сторона прямокутника

 

а

 

10

8

6

4

2

1

b

 

10

12

14

16

18

19

Площа

 

S

100

96

84

64

36

19

 

     Якщо периметр прямокутника сталий, тоді з усіх прямокутників з цим периметром найбільшу площу має квадрат.

     Якби Пахом знав цю властивість, він міг би пройти, наприклад, усього 36 верст і в результаті обійти ділянку більшої площі.

   Р = 94=36 (верст)           S = 99=81 (кв. верст)

Тоді оповідання не мало б такого трагічного кінця:

  1. верста 1066,8 м.

IV.      Задачі за готовими малюнками.

  1.   Знайти площу ромбоподібної клумби, якщо відстань між протилежними її вершинами дорівнюють відповідно 5м і 8м.

                            

  1. Площа залу Зал має форму паралелограма зі стороною 20 м. Знайти висоту цього паралелограма.

                             

  1. Зал  має форму правильного трикутника зі стороною 4м. Знайти площу підлоги.

                                           

 

 

  1. Квадратна кімната по діагоналі 6м. Скільки квадратних метрів килимового покриття необхідно для покриття підлоги.

                                           

V.     Диференційовані завдання:

Задача 1.  Основою постаменту пам’ятника є квадрат зі стороною 6м. Навколо пам’ятника проходить алея шириною 2м. Знайти площу алеї.

Освітлення кімнати вважається нормальним, якщо площа вікон складає не менше 0,2 площі підлоги. Визначити, чи є нормальним освітлення нашої класної кімнати.

2*2м

Ширина: 6,2 м, довжина: 8м.

;             Уже при площі вікон 10освітлення кімнати є нормальним.

  Пофарбована стіна довжиною 8,25м і висотою 4,32м має три вікна розміром 2,2*1,2 м*м кожне. Знайти площу тієї поверхні стіни, яка пофарбована.

Задача 4. Ставок має форму квадрата. У вершинах квадрата на березі ставка ростуть чотири дуба. Хочуть вдвічі збільшити площу ставка, але так, щоб всі чотири дуба залишалися цілими (тобто були на березі). Як це зробити?

 

   

             B C

  

  A D

  

Побудуємо точки  О1,О234, симетричні точці О відносно прямих BC, AD, CD, і AB відповідно. Доведемо, що  площа  утвореного квадрата вдвічі більша за площу початкового.

 

VI. Підсумок уроку. Рефлексія, Оцінювання.

  • Що ми сьогодні робили на уроці?
  • Для чого нам потрібні ці знання?
  • Який з чотирикутників із сталим периметром має найбільшу площу?

На заздалегідь заготовлених аркушах паперу діти пишуть речення, починаючи зі слів: Я знаю… Я вмію…. Я можу… , прикріплюють на плакат.

Оцінюємо рівень навчальної компетентності учнів:

  • За роботу на всіх етапах уроку
  • За роботу на окремих етапах уроку.

Домашнє завдання:А.П.Єршова, В.В.Голобородько : повторити §18, ст.. 193 задачі 1-5

Пам’ятайте: «Тисячі шляхів ведуть до помилки, до істини тільки один»

то ж  я вам бажаю, щоб ви завжди вибирали той єдиний правильний шлях до істини, і допоможуть вам в цьому ваші знання геометрії.

 Діти, я вдячна вам за роботу, а гостям я вдячна за увагу. Допобачення.

 

Використана література:

  1. С.С.Варданян. Задачи по планиметрии с практическим содержанием: Кн.для учащихся 6-8 кл. сред.шк. / Под ред.. В.А.Гусева – М.: Просвещение, 1989. – 144с.
  2. А.П.Єршова, В.В.Голобородько Підручник з геометрії для учнів 8 класу.
     
doc
Пов’язані теми
Геометрія, Розробки уроків
Інкл
Додано
8 лютого 2022
Переглядів
1248
Оцінка розробки
Відгуки відсутні
Безкоштовний сертифікат
про публікацію авторської розробки
Щоб отримати, додайте розробку

Додати розробку