Урок розв'язування задач "Теорема Піфагора"

Про матеріал
Теорема Піфагора - одна з найважливіших теорем у геометрії. Чим цікавішим буде урок, тим більше шансів отримати кращий результат по засвоєнню теореми та її формули. У презентації до уроку використовуються задачі практичного змісту із навколишнього життя.
Зміст слайдів
Номер слайду 1

Теорема Піфагора. Розв’язування задач

Номер слайду 2

Сторони прямокутного трикутника дорівнюють … ВС- АС- АВ-САВ

Номер слайду 3

Розв’язати задачіСВАВС=24м. АС=10м. Знайти АВ

Номер слайду 4

Розв'язування АВ²=АС²+ВС²АВ²=24²+10²=576+100=676 АВ=√676=26 Відповідь: 26м.

Номер слайду 5

На карті харківського зоопарку відстань від входу до вольєра з оленями дорівнює10 см, а відстань від головного входу до вольєра з верблюдами 8 см. Знайти відстань від верблюдів до оленів, якщо кут С прямий.с. ВА

Номер слайду 6

Розв'язуванняс. ВАДано: АВ=10см. АС=8см. Знайти ВСВС- невідомий катет прямокутного трикутника АВС, тому. ВС²=АВ²-АС²ВС²=10²-8²=100-64=36 ВС=√36=6(см)Відповідь: 6 см

Номер слайду 7

На карті України відстань між Харковом і Житомиром дорівнює 5см,а між Харковом і Дніпропетровськом 3см. Знайти відстань між Дніпропетровськом та Житомиром, якщо кут С прямий. САВ

Номер слайду 8

Бічні сторони…Кути при основі…ВМ…Якщо АС=10,то …АМ=…АВСРозповісти все, що відомо про рівнобедрений трикутник. М

Номер слайду 9

Самостійна робота1. Катети прямокутного трикутника відносяться як 3:4, а гіпотенуза дорівнює 20см. Знайти катети трикутника.2. Бічна сторона рівнобедреного трикутника відноситься до основи рівнобедреного трикутника як 5:6 , а висота трикутника проведена до основи 12 см. Знайти сторони трикутника.3. Знайти довжину медіани рівностороннього трикутника зі стороною 10 см. Додатково:

Номер слайду 10

Додатково: задача давньокитайського вченого Цзинь Кіо-Чау 1250 р. до н. е. В центрі колодязя у формі квадрату зі стороною 10 футів росте камишина, висота якої над поверхнею води дорівнює 1 фут ( 1фут≈зо см). Якщо її нахилити до берега ( до середини колодязя), то вона дістане верхівкою до берега. Яка глибина колодязя?

Номер слайду 11

Середня оцінка розробки
Структурованість
5.0
Оригінальність викладу
5.0
Відповідність темі
5.0
Загальна:
5.0
Всього відгуків: 1
Оцінки та відгуки
  1. Городнянський Степан Васильович
    Дякую! Із задоволенням використаю на своїх уроках!
    Загальна:
    5.0
    Структурованість
    5.0
    Оригінальність викладу
    5.0
    Відповідність темі
    5.0
pptx
Додано
3 серпня 2019
Переглядів
956
Оцінка розробки
5.0 (1 відгук)
Безкоштовний сертифікат
про публікацію авторської розробки
Щоб отримати, додайте розробку

Додати розробку