Конспект уроку математики в 6 класі "Порівняння раціональних дробів" з використанням інтерактивної дошки. Тип уроку "Застосування знань, умінь і навиків".
Тема. Порівняння раціональних чисел.
Мета: Навчальна. Навчити порівнювати раціональні числа. На основі спостережень і попереднього досвіду учнів вивести правило порівняння будь-яких двох раціональних чисел та виробити вміння використовувати його для порівняння раціональних чисел і розв'язування вправ, що передбачають порівняння раціональних чисел.
Розвивальна. Розвивати увагу, вміння мислити та застосовувати здобуті знання.
Виховна. Виховувати працелюбство, самостійність, інтерес до математики, історії математики.
Корекційна. Розвивати розумові процеси: мислення, увагу, пам’ять. Проводити особистісну корекцію. Удосконалювати координацію рухів. Розширювати поле зору.
Обладнання. Презентація Microsoft Power Point, мультимедійна дошка, програма Labwe, дошка, підручники, роздавальні картки відповідно до вимог зорових навантажень.
Тип уроку. Урок застосування знань, умінь і навиків.
Хід уроку
І. Організаційний етап ( 2 хв.)
ІI. Перевірка домашнього завдання (5 хв.)
ІІІ. Мотивація навчальної діяльності. Повідомлення теми уроку (2 хв.)
IV. Актуалізація опорних знань (4 хв.)
Усні вправи. Бліц-опитування на інтерактивній дошці.
35* 0,35; 35,1* 35,01; *; 2,7 * 2.
V. Застосування знань(на інтерактивній дошці) (10 хв.)
1. Порівняння чисел за допомогою координатної прямої
Задача. Позначте на координатній прямій числа -7; -5; 5; 0; 1; -1; 3. Порівняйте числа: а) 1 і 5; б) 1 і 3; в) 3 і 5. З'ясуйте за допомогою координатної прямої, як розташоване число 1 по відношенню до кожного з інших чисел.
Згадаймо, що в 5 класі під час вивчення теми порівняння натуральних чисел
ми говорили, що на координатному промені менше число завжди лежить
ліворуч, а більше — навпаки — праворуч. Взагалі, на координатній прямій
більше з двох чисел лежить праворуч, а менше — ліворуч.
Приклад. Порівняйте числа a, b, c, d, зображені на рисунку
Ми бачимо, що всі додатні числа лежать справа від 0, а всі від'ємні числа зліва від 0, отже:
Наприклад, 3 > 0; -3 < 0; -3 < 3; 3 > -3.
Якщо ж обидва числа (а і b) від'ємні, то
ліворуч буде те число, яке далі за інше від 0, а отже:
3) з двох від'ємних чисел більшим є те, в якого модуль менший.
Наприклад, -3,7 > -7,3, оскільки |-3,7| = 3,7; 3,7 < 7,3, оскільки |-7,3| = 7,3.
У другому випадку:
а) додатне > від'ємного; б) додатне > 0; в) від'ємне < 0; г) з двох від'ємних більшим є те, в якого модуль менший.
V. Засвоєння вмінь (15 хв.)
Усні вправи № 1074, 1075, 1076.
Письмові вправи № 1080.
VІ. Підсумок уроку (Слайд 18). Оцінювання (5 хв.)
VIІ. Домашнє завдання (Слайд 19) (2 хв.)
§ 25 (вивчити правила),
N1079- середній рівень,
N1079, N1083(3) – достатній та високий рівні,
Повторити § 6.