План підготовки до ЗНО з математики
|
Алгебра |
|||
|
|
|||
|
Дата початку і завершення опрацювання теми |
Тема |
|
Розділи в темі для детальної підготовки |
□ |
|
Дійсні числа (натуральні, цілі, раціональні та ірраціональні) |
□ |
види чисел та числових проміжків; |
□ |
властивості дій з цілими числами, модуль числа, правила порівняння чисел; |
|||
□ |
ознаки подільності чисел на 2, 3, 5, 9, 10; правила знаходження найбільшого спільного дільника та найменшого спільного кратного чисел |
|||
□ |
дробові числа; додавання, віднімання, ділення і множення дробів; |
|||
□ |
правила округлення цілих чисел і десяткових дробів. |
|||
□ |
|
Степені та корені |
□ |
поняття та властивості степенів; |
□ |
властивості коренів і їх зв’язок зі степенем; |
|||
□ |
степінь з натуральним, цілим та раціональним показниками, його властивості |
|||
□ |
розв’язування виразів зі степенями, їх спрощення. |
|||
□
|
|
Відношення та пропорції.
|
□ |
відношення, пропорції; основна властивість, пропорції; |
□ |
означення відсотка; правила виконання відсоткових розрахунків |
|||
□ |
знаходження відношення чисел у вигляді відсотка, відсоток від числа, число за значенням його відсотка; |
|||
□ |
розв'язування задач на відсоткові розрахунки та пропорції; |
|||
□ |
розв'язування текстових задач арифметичним способом. |
□ |
|
Раціональні вирази та їх перетворення |
□ |
вирази та їхні перетворення означення тотожно рівних виразів, тотожного перетворення виразу, тотожності; |
□ |
означення одночлена та многочлена; |
|||
□ |
правила додавання, віднімання і множення одночленів та многочленів; |
|||
□ |
формули скороченого множення; |
|||
□ |
розклад многочлена на множники; |
|||
□ |
означення дробового раціонального виразу; правила виконання дій з дробовими раціональними виразами. |
|||
□ |
|
Рівняння |
□ |
лінійні рівняння; |
□ |
неповні квадратні рівняння; дискримінант; |
|||
□ |
повні квадратні рівняння; теорема Вієта; |
|||
□ |
дробово-раціональні рівняння; |
|||
□ |
розв’язання завдань зі зімішаними типами рівнянь; |
|||
□ |
системи рівнянь, способи: підстановки, додавання, графічний; |
|||
□ |
розв’язання задач за допомогою рівнянь та їх систем. |
|||
□ |
|
Нерівності |
□ |
лінійні нерівності; |
□ |
квадратні нерівності, метод інтервалів; |
|||
□ |
дробово-раціональні нерівності; |
|||
□ |
системи нерівностей; |
|||
□ |
розв’язання завдань зі змішаними типами нерівностей. |
|||
□ |
|
Основні функції |
□ |
означення функції, області визначення, області значень функції, графік функції; |
□ |
основні функції (лінійна, гіпербола, парабола) та їх найпростіші перетворення; |
|||
□ |
побудова квадратичної функції, властивості; кусково-задана функція; |
|||
□ |
парність і непарність функції. |
|||
□ |
|
Числові послідовності |
□ |
арифметична прогресія, властивості, сума; |
□ |
системи рівнянь і текстові задачі з арифметичною прогресією; |
|||
□ |
геометрична прогресія, її властивості і сума; |
|||
□ |
системи рівнянь і задачі з геометричною прогресією. |
|||
□ |
|
Логарифмічні та показникові вирази, функції |
□ |
основні властивості і вигляд логарифма; показникові вирази; |
□ |
логарифмічні та показникові рівняння; |
|||
□ |
логарифмічні та показникові нерівності; |
|||
□ |
вигляд логарифмічної та показникової функції, властивості. |
□ |
|
Тригонометричні вирази, функції |
□ |
основні формули з тригонометрії та їх застосування; одиничне коло; |
□ |
графік тригонометричних функцій, властивості; |
|||
□ |
тригонометричні рівняння та нерівності. |
|||
□ |
|
Похідна |
□ |
поняття похідної та основні значення по таблиці; |
□ |
проста та складена похідна; |
|||
□ |
дослідження функцій за допомогою похідної. |
|||
□ |
|
Первісна та інтеграл |
□ |
поняття та основна таблиця первісних; |
□ |
невизначений інтеграл; |
|||
□ |
визначений інтеграл, формула Ньютона-Лейбніца; |
|||
□ |
знаходження площ криволінійних фігур. |
|||
□ |
|
Комбінаторика, ймовірність, основи статистики |
□ |
основні правила комбінаторики, знаходження максимальної кількості можливих подій; |
□ |
ймовірність випадкової події; |
|||
□ |
статистика: вибірка, мода, медіана, середнє арифметичне. |
|||
Геометрія |
||||
□ |
|
Елементарні геометричні фігури. на площині та їхні властивості
|
□ |
поняття точки та прямої, променя, відрізка, ламаної, кута; |
□ |
аксіоми планіметрії; |
|||
□ |
суміжні та вертикальні кути, бісектриса кута; властивості суміжних та вертикальних кутів; |
|||
□ |
паралельні та перпендикулярні прямі , відстань між паралельними прямими; |
|||
□ |
перпендикуляр і похила, серединний перпендикуляр, відстань від точки до прямої; ознаки паралельності прямих; |
|||
□ |
теорема Фалеса ; |
|||
□ |
ознаки та властивості елементарних геометричних фігур до розв'язування планіметричних задач та задач практичного змісту. |
|||
□ |
|
Коло і круг |
□ |
поняття кола, радіуса та діаметра; хорда та дуга кола, властивості; |
□ |
дотична до кола, коло що вписане в трикутник і описане навколо нього; |
|||
□ |
різниця між колом і кругом, формули довжини кола, площі круга; |
|||
□ |
сектор, сегмент круга. |
|||
□ |
|
Трикутники |
□ |
поняття трикутника; медіана, бісектриса, висота трикутника, сума кутів; |
□ |
ознаки рівності трикутників, подібні трикутники; |
|||
□ |
рівнобедренний, рівносторонній трикутники, їх властивості; |
|||
□ |
прямокутний трикутник, sin, cos, tg в прямокутному трикутник; катет проти кута 30, теорема Піфагора; |
|||
□ |
різносторонні трикутники, теореми синусів та косинусів; |
|||
|
|
|
□ |
площі трикутників, трикутник і коло. |
□ |
|
Чотирикутники |
□ |
опуклі чотирикутники; квадрат, прямокутник; властивості і площа. |
□ |
паралелограм, ромб; |
|||
□ |
трапеція, іі властивості; |
|||
□ |
чотирикутники і коло. |
|||
□ |
|
Многокутники |
□ |
правильні многокутники, сума кутів, площа; |
□ |
радіуси кіл що вписані в многокутники і описані навколо них. |
|||
□ |
|
Вектори |
□ |
прямокутну систему координат на площині, координати точки; поняття вектора, нульового вектора, модуля вектора, колінеарні вектори, протилежні вектори, рівні вектори, координати вектора; додавання, віднімання векторів, множення вектора на число; |
□ |
обчислення відстані між двома точками та обчислення координат середини відрізка; |
|||
□ |
рівняння прямої та кола; |
|||
□ |
кут між векторами, перпендикулярні та колінеарні вектори; |
|||
□ |
скалярний добуток векторів. |
|||
□ |
|
Геометричні перетворення та переміщення |
□ |
основні види та зміст геометричних переміщень на площині (рух, симетрія відносно точки та відносно прямої, поворот, паралельне перенесення). |
□ |
|
Прямі та площини у просторі |
□ |
аксіоми стереометрії; взаємне розміщення прямих у просторі, прямої та площини у просторі, кількох площин у просторі; |
□ |
паралельність прямих, прямої та , площини, площин; паралельне проектування; |
|||
□ |
перпендикулярність прямих, прямої та площини, двох площин; теорема про три перпендикуляри; |
|||
□ |
відстань від точки до площини, від прямої до паралельної їй площини, між паралельними площинами; |
|||
□ |
кут між прямими, прямою та площиною, між площинами. |
|||
□ |
|
Многогранники, тіла обертання |
□ |
многогранники та їхні елементи, основні види многогранників: призма, паралелепіпед, піраміда; |
□ |
тіла обертання, основні види тіл обертання: циліндр, конус, куля, сфера; |
|||
□ |
перерізи многогранників; перерізи циліндра і конуса: осьові перерізи, перерізи площинами, паралельними їхнім основам; переріз кулі площиною; |
|||
□ |
формули для обчислення площ поверхонь та об’ємів призми та піраміди; |
|||
□ |
формули для обчислення об’ємів циліндра, конуса, кулі; формули для обчислення площі сфери. |
|||
□ |
|
Координати та вектори у просторі |
□ |
завдання про знаходження довжини вектора у просторі, середина відрізка. |