Презентація "Тригонометричні функції числового аргументу"

Про матеріал
Забезпечити повторення, узагальнення і систематизацію матеріалу теми, подовжити формувати вміння й уміння з використання тригонометричних формул, створити умови контролю
Зміст слайдів
Номер слайду 1

Тригонометричні функції числового аргументу. Мета:забезпечити повторення, узагальнення і систематизацію матеріалу теми, подовжити формувати вміння і навики по використанню тригонометричних формул. Урок-гра

Номер слайду 2

Тихіше їдеш - дальше будешsin tcos ttg tctg t. Екіпажі

Номер слайду 3

Математичне раліПДРТехогляд. Гонка по пересічній місцевостіРаптова зупинка Привал. Фініш

Номер слайду 4

Правила дорожнього руху. Зберіть «розсипані» формули            2                                                                                                             8       1   5о                                4                                     7                            3                                    6                                                    Кросворд. Наука, що в перекладі з грецької означає “Вимірювання трикутника”Дуга, довжина якої дорівнює радіусу дуги.{306799 F8-075 E-4 A3 A-A7 F6-7 FBC6576 F1 A4}ТРИГОНОМЕТРІЯ{306799 F8-075 E-4 A3 A-A7 F6-7 FBC6576 F1 A4}РАДІАНАбсциса точки Рα одиничного кола{306799 F8-075 E-4 A3 A-A7 F6-7 FBC6576 F1 A4}КОСИНУСВідношення синуса числа до косинуса цього числа{306799 F8-075 E-4 A3 A-A7 F6-7 FBC6576 F1 A4}ТАНГЕНСОрдината точки Рα одиничного кола{306799 F8-075 E-4 A3 A-A7 F6-7 FBC6576 F1 A4}СИНУСЯк називається коло з центром в початку координат і радіусом рівним одиниці?{306799 F8-075 E-4 A3 A-A7 F6-7 FBC6576 F1 A4}ОДИНИЧНЕВідношення косинуса числа до його синуса{306799 F8-075 E-4 A3 A-A7 F6-7 FBC6576 F1 A4}КОТАНГЕНСЯк ще називають основну тригонометричну тотожність?{306799 F8-075 E-4 A3 A-A7 F6-7 FBC6576 F1 A4}ОДИНИЦЯ1/180 частина розгорнутого кута{306799 F8-075 E-4 A3 A-A7 F6-7 FBC6576 F1 A4}ГРАДУСаtg2t + 11 1бtg t 2cos tsin t, t ≠ πк, к Z.вsin2t + cos2t31sin2𝑡, t ≠ πк, к Z.гctg t41, t ≠ πк / 2, к Z.д1 + ctg2t5sin tcos t, t ≠ π/2 + πк, к Z.єtg t ∙ctg t61cos2t, t ≠ π/2 + πк, к Z.аtg2t + 11 1бtg t 2вsin2t + cos2t3гctg t41, t ≠ πк / 2, к Z.д1 + ctg2t5єtg t ∙ctg t6{F5 AB1 C69-6 EDB-4 FF4-983 F-18 BD219 EF322}абвгдє651234

Номер слайду 5

Технічний огляд№Вирази. Варіанти відповідей. АВС1.1 – cos2αcos2α- sin2αsin2α2.sin2α – 1cos2α- cos2α2 cos2α3.( cos α - 1)(1+ cos α)-sin2α(1+ cos α)2(cos α - 1)24.2tgα(1-sin2α)sin2αsinαcos2α5.1−𝑐𝑜𝑠2𝛼1−𝑠𝑖𝑛2𝛼𝑐𝑡𝑔2α𝑡𝑔2αtg2α№Вирази. Варіанти відповідей. АВС1.1 – cos2αcos2α- sin2αsin2α2.sin2α – 1cos2α- cos2α2 cos2α3.( cos α - 1)(1+ cos α)-sin2α(1+ cos α)2(cos α - 1)24.2tgα(1-sin2α)sin2αsinαcos2α5.tg2αСпростити виразиsin2αsin2α-cos2α𝒕𝒈𝟐α -sin2α

Номер слайду 6

Гонка по пересічній місцевостіsin tcos ttg tctg t. Знайти соsα, tgα, ctgα, якщо sinα = –0,8 і 180° < α < 270°Знайти sinα, tgα, ctgα, якщо соsα = –4/5 і 90° < α < 180°Знайти sinα, соsα, ctgα, якщо tgα = –1 і 270° < α < 360°Знайти sin α, cos α, tg α, якщо сtg α=5/12, 00<α<900 Розв’язання . Якщо 180° < α < 270°, то соs α<0. Оскільки sinα = -0,8 і соs2α + sin2α = 1, то с𝑜𝑠𝛼=−1−(−0,8)2=−0,6. Тоді 𝑡𝑔𝛼=−0.8−0.6=43; 𝑐𝑡𝑔𝛼=34 Розв'язування Якщо 90° < α < 180°, то sin α>0. Оскільки cosα = -4/5 і соs2α + sin2α = 1, то 𝑠𝑖𝑛𝛼=1−−452=35. Тоді 𝑡𝑔𝛼=35∙−54=−34; 𝑐𝑡𝑔𝛼=−43 Відомо, що 1+𝑡𝑔2=1𝑐𝑜𝑠2𝛼 і α – кут четвертої четверті, тому с𝑜𝑠𝛼=11+−12=12sinα=−1−122=−12сtgα =-1 Розв’язання tgα =12/5 Відомо, що 1+𝑡𝑔2=1𝑐𝑜𝑠2𝛼 і α – кут першої четверті, тому с𝑜𝑠𝛼=11+1252=513𝑠𝑖𝑛𝛼=1−5132=1213 

Номер слайду 7

Раптова зупинка. Екіпаж «Синус» Якщо 0< t < π /2, і sin t > 0, то sin(4 π + t) < 0. Екіпаж «Косинус»Якщо cos (- t) = 3/5, то cos t = - 3/5. Екіпаж «Тангенс»Якщо tg t = 3/4, то tg(t – 4 π) = -3/4. Екіпаж «Котангенс»Якщо cos t = 0, то ctg(t + π) = 1. sin(4 π + t) > 0cos t = 3/5tg(t – 4 π) = 3/4ctg(t + π ) = 0

Номер слайду 8

Привал (цікаво знати)№0 – Мізинець - 0° №1-Безіменний - 30°№2- Середній - 45°№3- Вказівний - 60°№4- Великий - 90°𝒔𝒊𝒏𝛂=𝒏𝟐n - номер пальця №4 - Мізинець - 0° №3 – Безіменний - 30°№2 - Середній - 45°№1- Вказівний - 60°№0 - Великий - 90°𝒄𝒐𝒔𝜶=𝒏𝟐n - номер пальця {F5 AB1 C69-6 EDB-4 FF4-983 F-18 BD219 EF322}№ пальцякут α№ пальцякут α 00𝑠𝑖𝑛00=02=040°𝑐𝑜𝑠00=42=1130°𝑠𝑖𝑛300=12=12330°𝑐𝑜𝑠300=32245°𝑠𝑖𝑛450=22245°𝑐𝑜𝑠450=22360°𝑠𝑖𝑛600=32160°𝑐𝑜𝑠600=12=12490°𝑠𝑖𝑛900=42=1090°𝑐𝑜𝑠900=02=0{F5 AB1 C69-6 EDB-4 FF4-983 F-18 BD219 EF322}№ пальцякут α№ пальцякут α 0040°130°330°245°245°360°160°490°090°

Номер слайду 9

-101-sin π/4tg 0cos 3π/4sin(–π/2)tg π/3cos π/2sin(-π/6)cos π/4tg π/4 ctg 2π/3ctg(–π/6)ctgπsin π/2cos π/3sin 2π/3

Номер слайду 10

Підсумки. Для учнів:8 і більше «+» - оцінка «10»;7 «+»- оцінка «9»;6 «+»- оцінка «8»;5 «+»- оцінка «7»;4 «+» - оцінка «6»;3 «+» - оцінка «5»;2 «+» - оцінка «4». Для екіпажів: «+» і «-» взаємно знищуються. Підраховуються тільки знаки що залишилися. Сьогодні я дізнався…Було цікаво…Було важко…Я зрозумів, що…Тепер я можу…Я навчився…У мене вийшло…Я зміг…. Мене здивувало…Урок дав мені для життя…

Номер слайду 11

Домашнє завдання, • для учнів які отримали «7-11»балів № 220, №223 (2, 4, 6, 8) .• для решти учнів: № 217 (7,11,12), № 218 (1)

pptx
Додано
25 жовтня 2023
Переглядів
316
Оцінка розробки
Відгуки відсутні
Безкоштовний сертифікат
про публікацію авторської розробки
Щоб отримати, додайте розробку

Додати розробку