Текст Урок "Перетворення графіків функції"

Про матеріал
Розробка уроку з алгебри в 9 класі, "Найпростіші перетворення графіків функції". В даній розробці містяться різнорівневі приклади перетворень графіків функції.
Перегляд файлу

Тема: Найпростіші перетворення графіків функцій

Мета: сформувати  розуміння учнями змісту поняття "перетворення графіків функції", формувати практичні уміння виконувати найпростіші перетворення графіків функції за допомогою таких геометричних перетворень, як паралельне перенесення, симетрія, стиснення та розтягування, сформувати первинні уміння "читати графіки функцій" (тобто за відомими графіками) задавати рівняння функцій;

розвивати навички самостійної роботи, дослідницькі навики, формувати вміння аналізувати, порівнювати, узагальнювати вивчені факти;

виховувати працелюбність, самостійність,цілеспрямованість,зацікавленість до вивчення предмета, охайність і точність при виконанні роботи

Тип уроку: урок вивчення нового матеріалу.
Обладнання: таблиця «Найпростіші перетворення графіків функцій», комп’ютер, шаблони графіків , презентація «Найпростіші перетворення графіків»,  презентація «Графіки навколо нас».

 

ХІД УРОКУ

І. Організаційна частина.

Учитель перевіряє готовність учнів до уроку, налаштовує їх на роботу.

II. Перевірка домашнього завдання

1) Вказати область визначення функції (слайд 1)

Область визначення функції

Відповідь:  [ -1; 3]

Область визначення функції

Відповідь:  [ -2; 2]

Область визначення функції

Відповідь:  [ -2; 3]

2) Вказати область значення функції (слайд 2)

Область значення функції

Відповідь: Відповідь

Область значення функції

Відповідь: [ -1; 2]

3)  Вказати нулі функції: (слайд 3)

Нулі функції

Відповідь: х= -1; х=0; х=2

Нулі функції

Відповідь: х=-2; х= -1; х=1; х=3

4) Визначити: зростаюча чи спадна функція (слайд 4)

Зростаюча чи спадна функція

Відповідь: зростаюча

Зростаюча чи спадна функція

Відповідь: спадна 

Математичний диктант

1. Залежність, при якій кожному значенню аргументу відповідає одне єдине значення у, називається 

2.Назвіть способи завдання функції.

3. Усі значення, які набуває незалежна змінна, називаються областю …

4. Усі значення, які набуває залежна змінна, називаються областю …

5. Для побудови прямої, яка є графіком лінійної функції, потрібно … точки.  

 

ІІІ. Актуалізація опорних знань.

1.Знайдіть область визначення функцій:

a)      

б) Зробіть висновок.

2. Точки А(1;1), В(2;4), С(3;9) належать графіку функції Знайдіть ординати точок із тими ж абсцисами, що й точки А, В, С, які належать графіку функції   Зробіть висновок.

 

 

ІV.Формулювання теми і задач уроку. Мотивація навчання.

План вивчення теми

1. Побудова графіка функції якщо відомий графік функції

2. 1. Побудова графіка функції якщо відомий графік функції

1. Побудова графіка функції якщо відомий графік функції

1. Побудова графіка функції якщо відомий графік функції

 

«Коли починаєш справу, спитай себе: «Що я маю зробити?»

Після закінчення: «Що я зробив?»

                                                                          Піфагор

       Запас функцій, графіки яких ви вміли будувати, був невеликий. Вико-ристовуючи відомості про перетворення графіків функцій, цей список можна суттєво розширити.

А навіщо?

Презентація «Де ми зустрічаємось з графіками»

Сьогодні ми продовжимо вчитися будувати графіки більш складних функцій за допомогою перетворень.

V.Формування знань.

Для вивчення нових перетворень графіків ми розіб’ємося на 2 групи. Завдання для вивчення та презентації нової теми отримаєте з «квітки жасміна», як назвали петлю Декарта.График Декартова листа и асимптоты

У сучасному вигляді її представив Гюйгенс.График уравнения - цветок жасмина (англ. jasmine flower, фр. fleur de jasmin)

 

 

 

І група «Абсциса»

ІІ група «Ордината»

(На дошці квітка-петля Декарта з видами перетворень.)

Відривають лепестки – завдання та готують за підручником Ю.І. Мальований

п.4.2. «Перетворення графіків»

Групи працюють за планом з матеріалами підручника:

прочитати відповідне пояснення у підручнику, розібрати його, записати правило, вивчити, зобразити графік перетворення функції  у=х² на А-4.

Презентація-пояснення відповідного перетворення кожної групи на слайдах презентації.

VІ.Формування вмінь. Закріплення матеріалу

Розв’язання вправ за підручником № 231а)б), № 232 а) б), № 233а) г).

Побудуйте в одній координатній площині графіки функцій:

Найпростіші перетворення функцій

VІІ. Первинна перевірка знань

Розкажіть, за допомогою яких перетворень можна дістати із графіка функції  у=х² графік функції:

1) у=х²-1;

2) у=х²+1;

3) у=;

4) у=;

5) у=

Робота в групах

 

hello_html_m303f2770.png

hello_html_m5e72c1a2.png

 

 

 

 

 

 

 

 

 

VIII.Рефлексія досягнень.

Підводяться підсумки уроку. Учні в групах виставляють оцінки одне одному. Вчитель оцінює усю групу в цілому. При виході з класу прикріплюють смайлик настрою та знань на піраміду Знань.

X. Підсумок уроку. Домашнэ завдання.

Вивчити п.4.2( правила)

Розв'язати вправи № 248, № 225.

 

 

 

 

 

1

 

docx
Додано
24 березня 2019
Переглядів
1840
Оцінка розробки
Відгуки відсутні
Безкоштовний сертифікат
про публікацію авторської розробки
Щоб отримати, додайте розробку

Додати розробку