9 липня о 18:00Вебінар: Інклюзивна освіта в середній та старшій школі

Урок за темою: "Коло. Довжина кола"

Про матеріал

Метою уроку є повторення, систематизація та поглиблення знань учнів про коло, круг та їх частини; вироблення вміння знаходити довжину кола, експериментально визначати значення π; ознайомитися з історією його обчислення; активізація пізнавальної діяльність учнів шляхом проведення експериментів; виховування інтересу до математики, увага, старанність, ведення здорового способу життя.

Перегляд файлу

Криворізька загальноосвітня школа

 І-ІІІ ступенів № 8 Криворізької міської ради

Дніпропетровської області

 

 

 

КОНСПЕКТ УРОКУ

(математика, 6 клас)

 

Коло.

Довжина кола.

 

 

 

 

 

 

Провела вчитель

Невмержицька Тетяна Григорівна

 

Кривий Ріг

 

Тема:  Коло. Довжина кола. 

 

Мета:

  • повторити, систематизувати та поглибити знання учнів про коло, круг та їх частини;
  • виробити вміння знаходити довжину кола, експериментально визначити значення π; ознайомити з історією його обчислення;
  • активізувати пізнавальну діяльність учнів шляхом проведення експериментів;
  • виховувати інтерес до математики, увагу, старанність, здоровий спосіб життя.

 

Обладнання: девіз уроку, портрет Архімеда, циркуль, лінійка, нитки,  4 предмета у формі круга, таблиці для експерименту, лимон.

 

Девіз: «Найкращий спосіб вивчити що-небудь – це відкрити самому».

 

                           Хід уроку

І. Організація класу. Перевірка домашнього завдання.

 

Доброго дня! Хто відсутній в класі? Подаруймо чарівну посмішку один одному  і присутнім гостям на уроці. Пам’ятайте, що вона збагачує тих, хто її отримує, і не робить біднішими тих, хто її дарує. Вона триває мить, а в пам’яті, часом, залишається назавжди. Від неї добре, тепло, стає гарним настрій. От з таким настроєм ми й будемо працювати упродовж усього уроку.

Розпочнемо роботу з перевірки домашнього письмового завдання. Усно зачитаємо розв’язки. На полях робимо позначку + якщо все правильно та  якщо є помилки.

 

№ 889  (коментар дитини!)

Подія А – «випадає герб»

n = 1, m = 2

P(A) = 1/2.

Відповідь: 1/2.

 

№ 896  (коментар дитини!)

  1. Подія А – «червона кулька»

n = 6, m = 6+4=10

P (A) = 6/10 = 3/5.

  1. Подія В – «біла кулька»

n = 4, m = 10

P(B) = 4/10 = 2/5.

Відповідь: 3/5 та 2/5.  

 

 

914 (коментар дитини!)       

  1. (8,73 · (4,85 + 5,15) – 3,53 · ( 3,15 + 6,85)) : 26 = (8,73 · 10 – 3,53 · 10): 26 =

= 52 : 26 = 2.

  1. 430 – 2,55 · 8 · 20 · 0,05 · 12,5 = 430 – 255 = 175.

 

Додому вам було ще завдання: знайти у природі, побуті, повсякденному житті предмети, де б ховалися коло та круг. То ж  запрошую вас на аукціон таких предметів.

 (Наприклад: колесо, ґудзик, арена цирку, бублик, перстень, браслет,  сковорідка, і т. д., доки предмети не закінчаться )

А тепер запишіть в зошитах дату, класна робота.

 

ІІ. Актуалізація опорних знань.

 

Цікаво, що це за чорна скринька лежить на столі?

Так. Умови відкриття скриньки:

Є декілька підказок про предмет, який лежить у скриньці.  Чим більше підказок, тим менше балів можна отримати.

 

1.  Існує легенда про грецького винахідника Дедала (майстра, який зробив крила Ікару) та його племінника, дуже талановитого юнака, який придумав гончарне коло, першу в світі пилку та те, що  лежить у чорній скриньці. За це він поплатився життям, так як заздрісний дядько скинув його з високого міського молу.

2.  Самий древній цей предмет пролежав у землі 2000 років.

3. Під попелом Помпеї археологи знайшли багато таких предметів, виготовлених з бронзи.

4. За багато сотень років конструкція цього предмета практично не змінилася, настільки була довершеною.

5.  В Давній Греції вміння користуватися цим предметом  вважалося  верхом досконалості, а уміння розв’язувати задачі  з його  допомогою ознакою високого стану в суспільстві  та великого розуму.

6.  Цей предмет незамінний в архітектурі та будівництві.

7.  Цей предмет необхідний для перенесення розмірів з одного креслення на інше, для побудови рівних кутів.

8.  Про цей предмет є загадка: «Змовилися дві ноги: робити дуги та круги».

 

Так, це

ЦИРКУЛЬ!

Пропоную вам розв’язати анаграму і виключити зайве слово.

 

ГУКР

ЕРДАМІТ

ОЛКО

ВАТДКАР

 

Розв’язання:

КРУГ

ДІАМЕТР

КОЛО

КВАДРАТ

 

Зайве слово – «квадрат».

 

ІІІ. Мотивація пізнавальної діяльності.

 Але коло і круг ми не тільки будемо малювати адже практиці часто зустрічаються задачі, в яких треба  виміряти довжину кола.

Винахідливий розум людини придумав багато способів це зробити. Наприклад:

Щоб знайти довжину металевого обруча, можна його надрізати і випрямити у відрізок.

Можна прокотити коло по лінійці і знайти його довжину.

Можна пройтися по цьому колу кроками, знаючи довжину одного кроку знайти довжину кола.

Але ці способи не є зручними. Тому на  сьогоднішньому уроці ми вивчимо формули для знаходження довжини кола.

   ІV. Вивчення нового матеріалу.

  • Тема нашого уроку: Коло. Довжина кола.  Записуємо тему уроку.

Девізом нашого уроку є слова: «Найкращий спосіб вивчити що-небудь – це відкрити самому», тому ці формули ви будете відкривати самі.

1. Формування поняття числа П,  довжини кола.

- Яким приладом можна накреслити коло? (циркулем)

 Графічний тренінг.

  • Давайте із різних кіл  за допомогою циркуля «зліпимо» з вами снігову бабу (будують в зошитах циркулем по зразку).

 

 

 

 

 

 

 

 

 

 

 

 - Від чого залежатиме розмір нашої снігової баби? (від довжини кіл)

 - А довжина кола від чого залежить?  (від довжини діаметра)

 - Який же висновок можна зробити? (чим більший діаметр, тим більша довжина кола, і навпаки)

 - Як називається така залежність? (пряма пропорційна залежність).

 - Отже, для всіх кіл відношення довжини кола до діаметра повинно бути одним і тим самим числом?  Давайте перевіримо це!

Проведення експерименту. Дослідницька робота в групах.

- На кожну парту чергові розкладають по два картонних круги різного діаметру (з позначеним центром), нитки (різного кольору). Учні повинні  виміряти діаметр d і за допомогою нитки – довжину кола С. Дані занести до таблиці:

С

d

С/ d

1.

 

 

 

2.

 

 

 

 

Відношення довжини кола до діаметра вийшло у всіх групах однакове. Тому ми  можемо зробити висновок що ця частка є сталою величиною і позначається грецькою буквою π (пі).

 

Що це за  пі? І чому воно насправді дорівнює?

 Звернемось до учнів, які отримали випереджувальне завдання.

 

Доповідь учнів про число  π.

  1. Учень. Позначення цією літерою не випадкове, бо це – перша літера в грецькому слові «периферія» - коло, круг.

Ще у ІІІ столітті до нашої ери великий давньогрецький учений Архімед у праці  «Про вимірювання кола» першим довів, що відношення довжини кола до діаметра у всіх кіл однакове, і приблизно дорівнює 22/7.  Він був великим математиком, видатним інженером, винахідником і талановитим фізиком. У ХVІІІ столітті математики встановили, що число π виражається нескінченним неперіодичним десятковим дробом і дорівнює ≈3.14.

 

 Для зручності обчислень використовують наближене значення  числа π з точністю до сотих:

 

 

π = 3, 14

 

 

Розгадавши  ребус, ви знайдете ім’я давньогрецького філософа та математика, якому приписують відкриття найважливіших теорем геометрії. ПІФАГОР.

  1. Учень.

14 березня людство відзначає Міжнародний день числа π. Чому 14 березня? Якщо бути точніше, то вітати оточуючих з днем π потрібно в березні 14-го в 1:59:26, відповідно до цифрами числа π - 3,1415926 ...

 

 

 

Цікаво, що свято числа π, який відзначають 14 березня, збігається з днем народження одного з найбільш видатних фізиків сучасності Альбертом Ейнштейном.

 

     

 

 π = 3, 1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4999999837 2978049951 0597317328 1609631859 5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083 8142061717 7669147303 5982534904 2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787 6611195909 2164201989..........

 

3 Учень.  Я  знайшов віршовані способи запам’ятовування числа π

  1. число π запам’ятай –  Три цілих чотирнадцять сотих  підставляй!

 

  1. Двадцять дві сови сиділи,

 І завзято говорили,

Як їм 7 мишей зловити,

 Що для цього слід зробити.

7 мишей, що грають в жмурки,

У яких гладенькі шкурки...

 Хоч спіймати їх і важко

Та кортіло побалакать.

 22 сови старенькі

Мріють 7 мишей зловити.

Який це дріб?

 22/7

Вчитель: Використовуючи число π, можна записати формулу для обчислення довжини кола:

C/d= π,

 звідси C= π d.

Оскільки d=2r, то формулу для обчислення довжини кола можна записати у такому вигляді:

C=2 π r- довжина кола

Учні записують формули в зошиті.

 

V. Закріплення вивченого матеріалу.

 

  1. Усні вправи на готових малюнках:

 

 

 

               5                                                                                  

                                                        20

       r = 5, С=?                      d=20, S-?                         С = 3,14,   

       d = ?  

 

  1. С = 2 ·3,14·5= 31,4
  2. С = 3,14·20 = 62,8
  3. d = C:3,14= 3,14:3,14 = 1

 

2. Розв’язування завдань письмово з підручника сторінка 142 

 № 801 (б)

Розв’язуємо коментуванням.

  1. r = 3,6 см

C = 2πr

C ≈ 2· 3,14 · 3,6= 22,608(см)

  1. r = 0,4 см

C = 2πr

C ≈ 2· 3,14 · 0,4= 2,512(см)

 

          №828(б)

  1. r = 0,6 м

S = πr2

S ≈ 3,14· 0,62 = 3,14· 0,36 = 1,1304 (м2).

  1. r = 7 м

S = πr2

S ≈ 3,14·72 = 3,14· 49 = 153,86 (м2).

 

Робота в групах.

№ 805

С =11м

π≈22: 7

 C= π d

d= 11: 22:7= 3,5 м

 

 VІ. Підсумок уроку.

Урок закінчуємо. Хочу відмітити активність деяких учнів під час роботи на уроці.

 

VIII. Рефлексія

Ви бачите при вході в клас лісову красуню, ялинку. Але вона не звичайна. Ця ялинка не з голочками, а теж складається з кругів. Незабаром Новорічні і різдвяні свята, тому хочеться прикрасити її іграшками які відповідно до теми нашого уроку теж мають форму круга. Виберіть оранжеву кульку, якщо ви зрозуміли що вмієте творчо працювати і це вам подобається, рожеву, якщо ви задоволені, що можете так працювати, голубу, якщо почували себе на уроці не дуже впевнено.

І ще я хочу щоб ви на цих іграшках намалювали свій настрій на завершення нашого уроку. А настрій ви можете відобразити у вигляді смайлика. Закріпіть ці іграшки на ялинку.

 

Література:

  1. Тарасенкова Н.А., Богатирьова І.М.. Математика: Підручник для 6 класу. –Київ: Видавничий дім «Освіта», 2014 – 303 с..
  2. Вихор С. Нестандартні уроки математики.  5-6 класи: - Тернопіль: Видавництво «Підручники і посібники», 2007.
  3. Конфорович А.Г. Колумби математики. – Київ: Рад. шк., 1982

 

 

 

doc
Пов’язані теми
Математика, Розробки уроків
Додано
14 січня 2019
Переглядів
1659
Оцінка розробки
Відгуки відсутні
Безкоштовний сертифікат
про публікацію авторської розробки
Щоб отримати, додайте розробку

Додати розробку