В матеріалі описано перехід від тригонометричної до показникової форми запису комплексного числа. Розглянуто правила дій над комплексними числами в показниковій формі та приклади їх виконання.
Показникова форма запису комплексного числа. Дії над комплексними числами в показниковій формі
Номер слайду 2
Показникову форму запису комплексного числа одержують із тригонометричної форми,застосувавши формулу Ейлера:𝐜𝐨𝐬𝝋+і𝐬𝐢𝐧𝝋=еі𝝋. Застосуємо цю формулу до тригонометричної форми:z=r(cos𝜑+ іsin𝜑), тодіz=rеі𝝋. Означення 1. Запис комплексного числа у вигляді z=rеі𝝋 називається показниковою формою запису комплексного числа.
Номер слайду 3
Дії над комплексними числами в показниковій форміНехай задано два комплексних числа𝑧1=𝑟1𝑒𝑖𝜑1, z2=𝑟2𝑒𝑖𝜑2. Множення:𝒛𝟏𝒛𝟐=𝒓𝟏𝒓𝟐𝒆𝒊(𝝋𝟏+𝝋𝟐) Ділення:𝒛𝟏𝒛𝟐=𝒓𝟏𝒓𝟐𝒆𝒊(𝝋𝟏−𝝋𝟐)Нехай задано комплексне число z=rеі𝜑. Піднесення до степеня:𝒛𝒏=𝒓𝒏𝒆𝒊𝝋𝒏Обчислення кореня n-го степеня:𝒏𝒛=𝒏𝒓𝒆𝒊(𝝋+𝟐𝝅𝒌)/𝒏,k=0,1,2,3,…,n-1