Практическое занятие №3
по дисциплине «Теория вероятностей и математическая статистика»
по теме «Вычисление условных вероятностей,
операции над вероятностями».
Цели занятия: решение задач на вычисление условных вероятностей, выполнение операций над вероятностями, развитие логического и творческого мышления студентов, самостоятельной деятельности, вычислительных навыков.
Вариант 2.
1. Вероятность того, что студент сдаст первый экзамен, равна 0,9; второй – 0,9; третий – 0,8. найти вероятность того, что студент сдаст три экзамена.
2. При включении зажигания двигатель начнет работать с вероятностью 0,75. Найти вероятность того, что двигатель начнет работать при втором включении зажигания.
3. В урне 10 красных шаров и 5 белых. Из урны последовательно вынимают два шара. Найти вероятность того, что первый из взятых шаров – белый, а второй – красный.
4. Слово программист составлено из карточек, на каждой из которых написана одна буква. Затем карточки смешивают и вынимают без возврата по одной. Найти вероятность случая, когда буквы вынимаются в порядке заданного слова.
5. В трех коробках лежат книги: в первой – 10(из них 3 словаря), во второй – 15(из них 5 словарей) и в третьей – 8(из них 5 словарей). Из каждой коробки наудачу вынимают по одной книге. Найти вероятность того, что все три книги окажутся словарями.
Вопросы для самопроверки.
Домашнее задание.
Фамилия и имя студента записаны с помощью карточек. Карточки с буквами фамилии и имени смешивают в отдельные пачки и отдельно вынимают по одной карточке без возврата. Найти вероятность того, что буквы вынимаются в порядке следования в фамилии и имени. Выполнить задачу для своих данных.
Практическое занятие №3
по дисциплине «Теория вероятностей и математическая статистика»
по теме «Вычисление условных вероятностей,
операции над вероятностями».
Цели занятия: решение задач на вычисление условных вероятностей, выполнение операций над вероятностями, развитие логического и творческого мышления студентов, самостоятельной деятельности, вычислительных навыков.
Вариант 3.
1. Вероятность того, что студент сдаст первый экзамен, равна 0,9; второй – 0,9; третий – 0,8. найти вероятность того, что студент сдаст только один экзамен.
2. При включении зажигания двигатель начнет работать с вероятностью 0,9. Найти вероятность того, что двигатель начнет работать при третьем включении зажигания.
3. В ящике находятся 5 окрашенных деталей и 7 обычных. Сборщик взял последовательно 2 детали. Найти вероятность того, что первая из взятых деталей – окрашенная, а вторая обычная.
4. Слово статистика составлено из карточек, на каждой из которых написана одна буква. Затем карточки смешивают и вынимают без возврата по одной. Найти вероятность случая, когда буквы вынимаются в порядке заданного слова.
5. В двух ящиках находятся детали: в первом -10(из них 3 стандартных),во втором – 15(из них 6 стандартных). Из каждого ящика наудачу вынимают по одной детали. Найти вероятность того, что обе детали окажутся стандартными.
Вопросы для самопроверки.
Домашнее задание.
Фамилия и имя студента записаны с помощью карточек. Карточки с буквами фамилии и имени смешивают в отдельные пачки и отдельно вынимают по одной карточке без возврата. Найти вероятность того, что буквы вынимаются в порядке следования в фамилии и имени. Выполнить задачу для своих данных.
Практическое занятие №3
по дисциплине «Теория вероятностей и математическая статистика»
по теме «Вычисление условных вероятностей,
операции над вероятностями».
Цели занятия: решение задач на вычисление условных вероятностей, выполнение операций над вероятностями, развитие логического и творческого мышления студентов, самостоятельной деятельности, вычислительных навыков.
Вариант 4.
1. Вероятность того, что студент сдаст первый экзамен, равна 0,9; второй – 0,9; третий – 0,8. найти вероятность того, что студент сдаст не менее двух экзаменов.
2. При включении зажигания двигатель начнет работать с вероятностью 0,65. Найти вероятность того, что двигатель начнет работать при втором включении зажигания.
3. У сборщика имеется 10 конусных и 5 эллиптических валиков. Сборщик взял последовательно 2 валика. Найти вероятность того, что первый из взятых валиков – конусный, а второй эллиптический.
4. Слово вероятность составлено из карточек, на каждой из которых написана одна буква. Затем карточки смешивают и вынимают без возврата по одной. Найти вероятность случая, когда буквы вынимаются в порядке заданного слова.
5. Имеется 3 урны по 12 шаров в каждой. В первой урне 10, во второй 8 и в третьей 9 шаров белого цвета. Из каждой урны наудачу вынимают по одному шару. Найти вероятность того, что все три шара окажутся белыми.
Вопросы для самопроверки.
Домашнее задание.
Фамилия и имя студента записаны с помощью карточек. Карточки с буквами фамилии и имени смешивают в отдельные пачки и отдельно вынимают по одной карточке без возврата. Найти вероятность того, что буквы вынимаются в порядке следования в фамилии и имени. Выполнить задачу для своих данных.
Практическое занятие №4
по дисциплине «Теория вероятностей и математическая статистика»
по теме «Вычисление вероятностей сложных событий.
Формула полной вероятности».
Цели занятия: решение задач на вычисление сложных событий, развитие логического и творческого мышления студентов, самостоятельной деятельности, вычислительных навыков.
Вариант 1.
1. В пирамиде 10 винтовок, три из которых снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с оптическим прицелом, равна 0,85; для винтовки без оптического прицела эта вероятность равна 0,7. Найти вероятность того, что мишень будет поражена, если стрелок произведет один выстрел из наудачу взятой винтовки.
2. В первой коробке содержится 25 радиоламп, из них 20 стандартных; во второй коробке – 15 ламп, из них 11 стандартных. Из второй коробки наудачу взята лампа и переложена в первую. Найти вероятность того, что лампа, наудачу извлеченная из первой коробки, будет стандартной.
3. Имеется два набора деталей. Вероятность того, что деталь первого набора стандартная, равна 0,85, а второго – 0,95. Найти вероятность того, что взятая наудачу деталь (из наудачу взятого набора) – стандартная.
4. Набирая номер телефона, абонент забыл 2 цифры и, помня лишь, что эти цифры различны, набрал их наугад. Найти вероятность того, что набранные цифры правильные.
5. Из 50деталей 18 изготовлены в первом цехе, 20 – во втором, остальные в третьем. Первый и третий цеха дают продукцию отличного качества с вероятностью 0,95, второй цех – с вероятностью 0,7. Какова вероятность того, что взятая наудачу деталь будет отличного качества?
Вопросы для самопроверки.
Домашнее задание.
В первой урне 6 белых и 4 черных шара, а во второй урне 5 белых и 7 черных шаров. Из первой урны взяли 3 шара, а из второй – 2 шара. Найти вероятность того, что среди вынутых шаров все шары одного цвета.
Практическое занятие №4
по дисциплине «Теория вероятностей и математическая статистика»
по теме «Вычисление вероятностей сложных событий».
Цели занятия: решение задач на вычисление сложных событий, развитие логического и творческого мышления студентов, самостоятельной деятельности, вычислительных навыков.
Вариант 2.
1. В пирамиде 25 винтовок, 8 из которых снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с оптическим прицелом, равна 0,9; для винтовки без оптического прицела эта вероятность равна 0,65. Найти вероятность того, что мишень будет поражена, если стрелок произведет один выстрел из наудачу взятой винтовки.
2. В первой коробке содержится 35 радиоламп, из них 20 стандартных; во второй коробке – 25 ламп, из них 10 стандартных. Из второй коробки наудачу взята лампа и переложена в первую. Найти вероятность того, что лампа, наудачу извлеченная из первой коробки, будет стандартной.
3. Имеется два набора деталей. Вероятность того, что деталь первого набора стандартная, равна 0,7, а второго – 0,9. Найти вероятность того, что взятая наудачу деталь (из наудачу взятого набора) – стандартная.
4. Брошены две игральные кости. Найти вероятность того, что сумма выпавших очков равна 8.
5. Из 70деталей 20 изготовлены в первом цехе, 25 – во втором, остальные в третьем. Первый и третий цеха дают продукцию отличного качества с вероятностью 0,9, второй цех – с вероятностью 0,75. Какова вероятность того, что взятая наудачу деталь будет отличного качества?
Вопросы для самопроверки.
Домашнее задание.
В первой урне 6 белых и 4 черных шара, а во второй урне 5 белых и 7 черных шаров. Из первой урны взяли 3 шара, а из второй – 2 шара. Найти вероятность того, что среди вынутых шаров все шары одного цвета.
Практическое занятие №4
по дисциплине «Теория вероятностей и математическая статистика»
по теме «Вычисление вероятностей сложных событий».
Цели занятия: решение задач на вычисление сложных событий, развитие логического и творческого мышления студентов, самостоятельной деятельности, вычислительных навыков.
Вариант 3.
1. В пирамиде 30 винтовок, 12 из которых снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с оптическим прицелом, равна 0,95; для винтовки без оптического прицела эта вероятность равна 0,75. Найти вероятность того, что мишень будет поражена, если стрелок произведет один выстрел из наудачу взятой винтовки.
2. В первой коробке содержится 50 радиоламп, из них 32 стандартных; во второй коробке – 25 ламп, из них 18 стандартных. Из второй коробки наудачу взята лампа и переложена в первую. Найти вероятность того, что лампа, наудачу извлеченная из первой коробки, будет стандартной.
3. Имеется два набора деталей. Вероятность того, что деталь первого набора стандартная, равна 0,65, а второго – 0,85. Найти вероятность того, что взятая наудачу деталь (из наудачу взятого набора) – стандартная.
4. Брошены две игральные кости. Найти вероятность того, что произведение выпавших очков равна 8.
5. Из 30деталей 8 изготовлены в первом цехе, 12 – во втором, остальные в третьем. Первый и третий цеха дают продукцию отличного качества с вероятностью 0,85, второй цех – с вероятностью 0,9. Какова вероятность того, что взятая наудачу деталь будет отличного качества?
Вопросы для самопроверки.
Домашнее задание.
В первой урне 6 белых и 4 черных шара, а во второй урне 5 белых и 7 черных шаров. Из первой урны взяли 3 шара, а из второй – 2 шара. Найти вероятность того, что среди вынутых шаров все шары одного цвета.
Практическое занятие №4
по дисциплине «Теория вероятностей и математическая статистика»
по теме «Вычисление вероятностей сложных событий».
Цели занятия: решение задач на вычисление сложных событий, развитие логического и творческого мышления студентов, самостоятельной деятельности, вычислительных навыков.
Вариант 4.
1. В пирамиде 10 винтовок, 7 из которых снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с оптическим прицелом, равна 0,9; для винтовки без оптического прицела эта вероятность равна 0,7. Найти вероятность того, что мишень будет поражена, если стрелок произведет один выстрел из наудачу взятой винтовки.
2. В первой коробке содержится 45 радиоламп, из них 20 стандартных; во второй коробке – 15 ламп, из них 11 стандартных. Из второй коробки наудачу взята лампа и переложена в первую. Найти вероятность того, что лампа, наудачу извлеченная из первой коробки, будет стандартной.
3. Имеется два набора деталей. Вероятность того, что деталь первого набора стандартная, равна 0,5, а второго – 0,95. Найти вероятность того, что взятая наудачу деталь (из наудачу взятого набора) – стандартная.
4. Брошены две игральные кости. Найти вероятность того, что сумма выпавших очков больше, чем их произведение.
5. Из 80деталей 28 изготовлены в первом цехе, 32 – во втором, остальные в третьем. Первый и третий цеха дают продукцию отличного качества с вероятностью 0,95, второй цех – с вероятностью 0,7. Какова вероятность того, что взятая наудачу деталь будет отличного качества?
Вопросы для самопроверки.
Домашнее задание.
В первой урне 6 белых и 4 черных шара, а во второй урне 5 белых и 7 черных шаров. Из первой урны взяли 3 шара, а из второй – 2 шара. Найти вероятность того, что среди вынутых шаров все шары одного цвета.
Практическое занятие №5
по дисциплине «Теория вероятностей и математическая статистика»
по теме «Вычисление вероятностей событий в схеме Бернулли».
Цели занятия: решение задач на вычисление вероятностей событий в схеме Бернулли, развитие логического и творческого мышления студентов, самостоятельной деятельности, вычислительных навыков.
Вариант 1.
1. Монету бросают 8 раз. Найти вероятность того, что «герб» выпадет не менее двух раз.
2. В семье шесть детей. Найти вероятность того, что среди этих детей два мальчика. Вероятность рождения мальчика принять равной 0,51.
3. В каждом из 500 независимых испытаний событие А происходит с постоянной вероятностью 0,4. Найти вероятность того, что событие А происходит: точно 220 раз; меньше чем 240 и больше чем 180 раз.
4. В цехе 6 моторов. Для каждого мотора вероятность того, что он в данный момент включен, равна 0,8. Найти вероятность того, что в данный момент включены все моторы.
5. Найти вероятность того, что при 400 испытаниях событие наступит ровно 104 раза, если вероятность его появления в каждом испытании равна 0,2.
Вопросы для самопроверки.
Домашнее задание.
Гмурман В.Е. Теория вероятностей и математическая статистика. -М.: Высшая школа, 2001. гл.5,§ 1 – 4, №4, №5 стр.63.
Практическое занятие №5
по дисциплине «Теория вероятностей и математическая статистика»
по теме «Вычисление вероятностей событий в схеме Бернулли».
Цели занятия: решение задач на вычисление вероятностей событий в схеме Бернулли, развитие логического и творческого мышления студентов, самостоятельной деятельности, вычислительных навыков.
Вариант 2.
1. Найти вероятность того, что событие А появится не менее трех раз в пяти испытаниях, если вероятность появления события А в одном испытании равна 0,4.
2. Вероятность всхожести семян пшеницы равна 0,9. Какова вероятность того, что из четырех посеянных семян взойдут не менее трех?
3. В каждом из 700 независимых испытаний событие А происходит с постоянной вероятностью 0,35. Найти вероятность того, что событие А происходит: точно 270 раз; меньше чем 270 и больше чем 230 раз.
4. Найти вероятность того, что событие А появится в пяти независимых испытаниях не менее трех раз, если в каждом испытании вероятность появления события А равна 0,4.
5. Найти вероятность того, что при 300 испытаниях событие наступит ровно 100 раза, если вероятность его появления в каждом испытании равна 0,6.
Вопросы для самопроверки.