Методичний посібник з іноземної мови (за професійним спрямуванням) для студентів III курсу спеціальностей:151, 141

Про матеріал
Методичний посібник складений для студентів спеціальностей: 151 Автоматизація та комп’ютерно-інтегровані технології (спеціалізація «Монтаж і обслуговування засобів і систем автоматизації технологічного виробництва»), 141 Електроенергетика, електротехніка та електромеханіка (спеціалізація «Монтаж і експлуатація електроустаткування підприємств і цивільних споруд»). Мета методичного посібника — розвиток навичок розуміння й аналізу оригінальних технічних текстів, збагачення словникового запасу новою лексикою, удосконалення навичок розмовної мови, уміння вести бесіду, брати участь у дискусіях англійською мовою, формувати соціально-комунікативну позицію фахівця з питань, пов'язаних з майбутньою професією. Методичний посібник складається з 20 тематичних розділів, додаткових текстів для читання і перекладу, англо-українського термінологічного словника з електротехніки. Кожний розділ являє собою окрему електротехнічну тему і включає тексти з фахової літератури. До текстів пропонуються лексико-граматичні вправи та завдання на формування мовленнєвих навичок і вмінь використання лексичного матеріалу, що вивчається в ситуаціях реального спілкування. Додаткові тексти для читання і перекладу можуть бути використані для організації самостійної роботи студентів. В кінці методичного посібника поданий словник електротехнічних термінів, котрий допоможе студентам краще зрозуміти зміст спеціалізованих текстів та вивчити професійні терміни. Матеріали посібника дають уявлення про специфіку професійної діяльності майбутнього електрика та слюсаря контрольно-вимірювальних приладів і автоматики, розширюють знання, отримані студентами при вивченні спецпредметів.
Зміст архіву
Перегляд файлу

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Індустріальний коледж

Державного вищого навчального закладу

 «Український державний хіміко-технологічний університет»

 

Затверджую                                                                                      Заступник директора                                                                                                            з навчальної роботи

 

______________С.О. Стоянова

 

«______»___________2018 року

 

Методичний посібник

з іноземної мови

(за професійним спрямуванням)

 

для студентів III курсу

спеціальностей:

151 Автоматизація та комп’ютерно-інтегровані технології

(спеціалізація «Монтаж і обслуговування засобів і систем

автоматизації технологічного виробництва»),

141 Електроенергетика, електротехніка та електромеханіка

 (спеціалізація «Монтаж і експлуатація електроустаткування підприємств і цивільних споруд»)

 

Розробила викладач 

Пухальська Д.Л.

Розглянуто і ухвалено

на засіданні комісії гуманітарних та соціальних дисциплін

Протокол № ____

від « ___ » ____________ 2018р.

 

Голова комісії

 

_______________Ляленко В.А.

 

 

2018

 

Методичний посібник складений для студентів спеціальностей:

151 Автоматизація та комп’ютерно-інтегровані технології  (спеціалізація «Монтаж і обслуговування засобів і систем автоматизації технологічного виробництва»),

141 Електроенергетика, електротехніка та електромеханіка  (спеціалізація «Монтаж і експлуатація електроустаткування підприємств і цивільних споруд»).

  Мета методичного посібника — розвиток навичок розуміння й аналізу оригінальних технічних текстів, збагачення словникового запасу новою лексикою, удосконалення навичок розмовної мови, уміння вести бесіду, брати участь у дискусіях англійською мовою, формувати соціально-комунікативну позицію фахівця з питань, пов'язаних з майбутньою професією.

 Методичний посібник складається з 20 тематичних розділів, додаткових текстів для читання і перекладу, англо-українського термінологічного словника з електротехніки. Кожний розділ являє собою окрему електротехнічну тему і включає тексти з фахової літератури. До текстів пропонуються лексико-граматичні вправи та завдання на формування мовленнєвих навичок і вмінь використання лексичного матеріалу, що вивчається в ситуаціях реального спілкування. Додаткові тексти для читання і перекладу можуть бути використані для організації самостійної роботи студентів.

В кінці методичного посібника поданий словник електротехнічних термінів, котрий допоможе студентам краще зрозуміти зміст спеціалізованих текстів та вивчити професійні терміни.

      Матеріали посібника дають уявлення про специфіку професійної діяльності майбутнього електрика та слюсаря контрольно-вимірювальних приладів і автоматики, розширюють знання, отримані студентами при вивченні спецпредметів.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Зміст

Unit 1 - Розділ 1

Text: The nature of electricity - Природа електрики……………………………..

 

5

Unit 2 - Розділ 2

Text: Electric current - Електричний струм………………………………………

 

7

Unit 3 - Розділ 3

Text: Effects produced by a current - Наслідки дії струму……………………….

 

9

Unit 4 - Розділ 4

Text: Electric circuits - Електричні ланцюги…………………………………….

 

12

Unit 5 - Розділ 5

Text: Alternating current - Змінний струм………………………………………..

 

14

Unit 6 - Розділ 6

Text: Conductors and insulators - Провідники та ізолятори……………………...

 

15

Unit 7 - Розділ 7

Text: Semiconductors - Напівпровідники………………………………………...

 

16

Unit 8 - Розділ 8

Text: Conductance and resistance - Провідність та опір........................................

 

18

Unit 9 - Розділ 9

Electricity and magnetism - Електрика та магнетізм

Text: Electromotive force - Електрорушійна сила……………………………….

Text: Electromagnetic induction - Електромагнітна індукція…………………...

Text: Electromotive force and resistance - Електрорушійна сила та опір………

 

 

20

Unit 10 - Розділ 10

Text: Dynamos - Дінамо-генератор………………………………………………

 

21

Unit 11 - Розділ 11

Text: Generators - Генератори………………………………..…………………..

 

22

Unit 12 - Розділ 12

Text: Main structural elements of a d. c. machine

Головні структурні елементи генератора постійного струму………………

 

 

24

Unit 13 - Розділ 13

Text: The alternator - Генератор змінного струму……………………………….

 

25

Unit 14 - Розділ 14

Text: The induction motor - Асинхронний електродвигун…………………..….

 

26

Unit 15 - Розділ 15

Types of induction motors - Види асинхронного електродвигуна

Text: Single-phase motor - Однофазний електродвигун…………………………

Text: Three - phase induction motor - Трифазний електродвигун………………

 

 

27

28

Unit 16 - Розділ 16

Text: Transformers - Трансформатори…………………………………………...

 

29

Unit 17 - Розділ 17

Text: Types of transformers - Види трансформаторів……………………………

 

30

Unit 18 - Розділ 18

Text: Measurements of electric values - Вимірювання електричних параметрів

 

32

Unit 19 - Розділ 19

Text: Main types of ammeters and voltmeters

Головні види амперметрів і вольтметрів……………………………………….

 

 

33

Unit 20 - Розділ 20

Text: Electrical measuring instruments and units

Електровимірювальні інструменти та одиниці…………………………………

 

 

34

Supplementary texts - Додаткові тексти

 

Part I – Частина I

History of electricity: outstanding scientists and discoveries

 Історія електрики: видатні вчені та відкриття

Text 1: George Symon Ohm - Георг Симон Ом………………………………….

Text 2: Ohm's law - Закон Ома……………………………………………………

Text 3: Faraday's law - Закон Фарадея…………………………………………...

Text 4: Emil Lenz. Lenz's law - Емілій Ленц. Закон Ленца………………………

Text 5: Kirchhoff's Laws - Закони Кірхгофа……………………………………..

Text 6: Invention of radio - Винахід радіо.…………………………………….....

Text 7: Charles Coulomb - Шарль Кулон………………………………………...

Text 8: Andre Marie Ampere - Андре-Мари Ампер……………………………..

Text 9: James Clerk Maxwell - Джеймс Клерк Максвел…………………………

Text 10: World brightest electric lamps - Найяскравіші електричні лампи у світі................................................................

Text 11: Early history of electricity - Рання історія електрики.............................

Text 12: From the history of electricity - З історії електрики……………………

Text 13: Nature of electricity - Природа електрики……………………………...

Text 14: Atmospheric electricity - Атмосферна електрика………………………

Text 15: Magnetism – Магнетизм…………………………………………………

Text 16: Magnetic effect of an electric current - Магнітна дія електричного струму……………………………………………………………………………..

 

 

 

36

 

 

37

 

38

 

39

 

 

 

 

12

41

 

42

 

43

Part II Частина II

Interesting facts on electricity and electronics  

Цікаві факти з електрики та електроніки

Text 1: Electricity may be dangerous - Електрика може бути небезпечною……

Text 2: Power transmission - Передача електроенергії……………………….....

Text 3: Hydroelectric power-station – Гідроелектростанція……………………..

Text 4: Nuclear power plant - Атомна електостанція……………………………

Text 5: Electronics and technical progress - Електроніка і технічний прогрес

Text 6: Protection and control equipment - Захисне і контрольне устаткування

Text 7: The nucleus – Ядро……………………………………………..................

Text 8: What is an electron? - Що таке електрон?...................................................

Text 9: Electrons and electronic charges - Електрони та електричний заряд…….

Text 10: Polarity – Полярність…………………………………............................

Text 11: Energy conversion - Перетворення енергії………………………….......

 

 

 

44

 

45

 

46

 

 

47

 

 

48

Electrical engineering dictionary - Електротехнічний словник………………….

48

Список використаної літератури..……………………………………………….

87

 

 

 

 

UNIT 1

I. Read the text.

The Nature of Electricity

Practical electricity is produced by small atomic particles known as electrons. It is the movement of these particles which produces the effects of heat and light.

The pressure that forces these atomic particles to move, the effects they encounter opposition and how these forces are controlled are some of the principles of electricity.

Accepted atomic theory states that all matter is electrical in structure. Any object is largely composed of a combination of positive and negative particles of electricity. Electric current will pass through a wire, a body, or along a stream of water. It can be established in some substances more readily than in others, that all matter is composed of electric particles despite some basic differences in materials. The science of electricity then must begin with a study of the structure of matter.

Matter is defined as any substance which has mass (or weight) and occupies space. This definition should be broad enough to cover all physical objects in the universe. Wood, water, iron, and paper are some examples of matter. Energy is closely related to, but not to be confused with, matter. Energy does not have mass, and it does not occupy space. Heat and light are examples of energy.

The smallest particle of matter which can be recognized as an original substance was thought to be a unit called the atom. Recently scientists have found particles even smaller than atoms, but our theories are still based on the atom. The atom consists of a nucleus and a cloud of electrons. It is generally agreed that the electrons are small particles of electricity, which are negative in nature. These particles orbit the nucleus in much the same fashion that planets orbit a sun.

II. Guess the meaning of the following international words:

Electricity, electron, effect, structure, combination, material, mass, energy, atom, orbit.

III. Give the English equivalents for the words below:

1) виробля́ти; 2) частка; 3) тепло і світло; 4) напруга; 5) сила; 6) речовина; 7) позитивний; 8) негативний; 9)електричний струм; 10) вага; 11) ядро.

IV. Translate into Ukrainian the words and expressions from the text:

1) atomic particle; 2) effects of heat and light; 3) encounter opposition; 4) principles of electricity; 5) composed (of); 6) pass through a wire; 7) structure of matter; 8) occupy space; 9) physical objects; 10) a cloud of electrons; 11) in the same fashion.

V. Complete the sentences using the text:

  1.     Electricity is produced by …
  2.     The effects of heat and light are produced by …
  3.     According to the accepted atomic theory all matter is …
  4.     Any object is composed of …
  5.     Matter is defined as …
  6.     Energy must not be confused with …
  7.     The atom consists of …
  8.     The smallest particle of matter is …
  9.     Most theories are based on …
  10. Electrons are …

      VI. Read the text below and choose appropriate answer for each statement.

1.Electricity is a phenomenon associated with stationary or moving electric... 

a) charges

b) atoms

c) conductors

2.The Greeks discovered that....rubbed with fur attracted light objects.

a) gold

b) rubber

c) amber

3.The invention of the....and the construction of the first central power

    station led to the rapid introduction of electric power into factories and homes.

a) semiconductors

b) incandescent light bulb

c) the number of electrons

4. Most elementary particles of matter possess charge, either ....... or

    negative.

a) chemical

b) positive

c) moving

5.If the numbers of..... and protons are equal, the atom is electrically

    neutral.

a) electrons

b) atoms

c) charges

6.According to the ability of the materials to allow charge to flow through them, there are              types of them.

a) two

b) ten

c) three

VII. Translate the sentences from English into Ukrainian.

1. Electricity is a phenomenon associated with stationary or moving electric charges.

2. The discovery of the electron, which carrics a charge designated as negative, showed that the various manifestations of electricity are the result of the accumulation or motion of numbers of electrons.

3. If the numbers of electrons and protons are equal, the atom is electrically neutral.

4. The charge can be built up by rubbing certain objects together, such as silk and glass or rubber and fur.

5. Electricity, especially at high voltages or high currents, is a dangerous

commodity.

6. Studies have shown a correlation between electromagnetic fields and cancer, but many of the studies have been challenged as methodologically flawed.

7. Other dangers from electricity include stray voltage and

electromagnetic field radiation.

8. The generation, transmission, and distribution of electric power are heavily regulated.

9. The electric generator was invented by Michael Faraday in 1831.

10. A flow of electric charge constitutes an electric current.

VIII. Answer the questions:

1) What are the principles of electricity? 2) What must the science of electricity begin with? 3) Are there any differences between energy and matter? What are they? 4) What is recognized as an original substance now?

VII. Topics for discussion:

  1. The nature of electricity;
  2. The nature of matter;
  3. Contents of atomic theory.

 

UNIT 2

I. Read the text.

Electric current

The electric current is a quantity of electrons flowing in a circuit per second of time. The unit of measure for current is ampere. If one coulomb passes a point in a circuit per second then the current strength is 1 ampere. The symbol for current is I.

The current which flows along wires consists of moving electrons. The electrons move along the circuit because the electromotive force drives them. The current is directly proportional to the e. m. f.

In addition to traveling through solids, however, the electric current can flow through liquids as well and even through gases. In both cases it produces some most important effects to meet industrial requirements.

Some liquids, such as melted metals for example, conduct current without any change to themselves. Others, called electrolytes, are found to change greatly when the current passes through them.

When the electrons flow in one direction only, the current is known to be d.c., that is, direct current. The simplest source of power for the direct current is a battery, for a battery pushes the electrons in the same direction all the time (i.e., from the negatively charged terminal to the positively charged terminal).

The letters a.c. stand for alternating current. The current under consideration flows first in one direction and then in the opposite one. The a.c. used for power and lighting purposes is assumed to go through 50 cycles in one second. One of the great advantages of a.c. is the ease with which power at low voltage can be changed into an almost similar amount of power at high voltage and vice versa. Hence, on the one hand alternating voltage is increased when it is necessary for long-distance transmission and, on the other hand, one can decrease it to meet industrial requirements as well as to operate various devices at home.

Although there are numerous cases when d.c. is required, at least 90 per cent of electrical energy to be generated at present is a.c. In fact, it finds wide application for lighting, heating, industrial, and some other purposes.

II. Guess the meaning of the following international words:

electric, ampere, symbol, proportional, industrial, metal, electrolyte, battery, generate.

III. Give the Ukrainian equivalents for the words and word combinations below:

1) текти, протікати; 2) ланцюг, схема; 3) одиниця виміру; 4) дріт; 5) електрорушійна сила; 6) тверде тіло; 7) рідина; 8) проводити (струм);  9) джерело енергії; 10) постійний струм; 11) змінний струм; 12) напруга. 

IV. Give Ukrainian equivalents for the following:

1) to meet industrial requirements; 2) melted metals; 3) to push in the same direction; 4) negatively (positively) charged terminal;             5) power and lightning purposes; 6) long-distance transmission; 7) to operate devices; 8) to find wide application.

V. Say whether these sentences are true or false:

  1.   The symbol for current is I.
  2.   The electric current can flow only through liquids.
  3.   The current can be of two types: direct current and alternating current.
  4.   The alternating current flows in one direction.
  5.   A battery is the simplest source of power for the direct current.
  6.   Direct current finds wider application than alternating current.
  7.   Electrolytes don’t change greatly when current passes through them.
  8.   One of the great advantages of alternating current is the ease with which voltage can be changed.

VI. Fill in the blanks, using the words from the box:

 

 

 

A quantity of moving electrons flowing in a circuit is the a) _______. The current can flow through b) ________ and c) ________. Some liquids d) _______ current without any change to themselves. When the electrons flow in one direction only, the current is known to be e) _______. The current flowing first in one direction and then in the opposite one is f) _______. Such advantage of alternating current as alternating g) _______ finds wide industrial and household application.

VII. State the questions to the underlined words:

1. Melted metals conduct current without any change to themselves.

2. Alternating voltage can be changed to operate various devices at home.

3. A battery pushes the electrons in the same direction.

4. The alternating current is used for power and lightning purposes.

5. Alternating current accounts for 90 per cent of electrical energy generated now.

     VIII. Choose the right option (a-b) to complete the sentences (1-10).

1. Electrical engineering is a field of engineering that generally deals..

    the study and application of electricity, electronics and electromagnetism.

a) with

b) at

c) in

2. The discovery of the electron, which carries ...... designated as

    negative, showed that the various manifestations of electricity are the result of the    

    accumulation or motion of numbers of electrons.

a)  atom

b) charge

c) amber

3. The first central..station (1881) was built by Thomas Alva Edison.

a) power

b) railway

c) factory

4. Materials that allow charge to pass easily are called..

a) semiconductors

b) insulator

c) conductors

5. Electric current is a flow of electric..through a medium.

a) substunce

b) charge

c) current

6. States have many statutes and regulations in place to protect the public from                …..shock.

a) current

b) electric

c) amber

7. Other dangers from electricity include stray voltage and electromagnetic ….  

     radiation.

a) field

b) insulator

c) conductor

8. Studies have shown a..between electromagnetic fields and cancer.

a) correlate

b) correlating

c) correlation

9. Some individuals who live or work near high-voltage power lines...

    brain cancer.

a) have developed

b) has developed

c) have develop

10. Electromagnetic fields .. whenever current moves through power

     lines.

a) is created

b) are created

c) be created

IX. Say some sentences about the types of electric current and its properties.

 

Unit 3

I. Read the text.

Effects produced by a current

The current flow is detected and measured by any of the effects that it   produces. There are three important effects accompanying the motion of electric charges: the heating, the magnetic, and chemical effects, the latter is manifested under special conditions.

The production of heat is perhaps the most familiar among the principal effects of an electric current. The heating effect of the current is found to occur in the electric circuit itself. It is detected owing to an increase in the temperature of the circuit. This effect represents a continual transformation of electric energy into heat. For instance, the current which flows through the filament of an incandescent lamp heats that filament to a high temperature.

The heat produced per second depends both upon the resistance of the conductor and upon the amount of current carried through it. The thinner the wire is, the greater the developed heat is. On the contrary, the larger the wire is, the more negligible the heat produced is. Heat is greatly desirable at times but at other times it represents a waste of useful energy. It is this waste that is generally called "heat loss" for it serves no useful purposes and decreases efficiency.

The heat developed in the electric circuit is of great practical importance for heating, lighting and other purposes. Owing to it people are provided with a large number of appliances, such as: electric lamps that light our homes, streets and factories, electrical heaters that are widely used to meet industrial requirements, and a hundred and one other necessary and irreplaceable things which have been serving mankind for so many years.

The electric current can manifest itself in some other way. It is the motion of the electric charges that produces the magnetic forces. A conductor of any kind carrying an electric current, a magnetic field is set up about that conductor. This effect exists always whenever an electric current flows, although in many cases it is so weak that one neglects it in dealing with the circuit. An electric charge at rest does not manifest any magnetic effect. The use of such a machine as the electric motor has become possible owing to the electromagnetic effect.

The last effect to be considered is the chemical one. The chemical effect is known to occur when an electric current flows through a liquid. Thanks to it a metal can be transferred from one part of the liquid to another. It may also effect chemical changes in the part of the circuit comprising the liquid and the two electrodes which are found in this liquid. Any of the above mentioned effects may be used for detecting and measuring current.

II. Give the English equivalents for the following words:

1) виявляти

2) вимірювати
3) заряд

4) нитка напруження
5) тепловий ефект

6) лампа розжарювання
7) прилад

8) втрата енергії
9) освітлювати

10) виявлятися, проявлятися

III. Guess the meaning of the following international words:

transformation, temperature, chemical, magnetic, special, practical, motor, electrode.

IV. Insert words and expressions:

  1. The current flow is (виявляється і вимірюється) by any of the effects that it produces.
  2. There are three important effects accompanying the motion of (електричні заряди).
  3. The current which flows through the (нитка напруження лампи розжарювання) heats that filament to a high temperature.
  4.  Heat represents (втрату корисної енергії) at times.
  5.  Electric lamps (освітлювати) our homes, streets and factories.
  6.  The electric current can (проявляти) magnetic effect.

 

V. Choose the correct translation:

The heating effect of the current is found to occur in the electric circuit itself.

  1. Встановлено, що тепловий ефект електричного струму з'являється в самому електричному ланцюзі.
  2. Тепловий ефект електричного струму може з'являтисяв самому 

електричному ланцюзі.

  1. Встановлено, що тепловий ефект електричного струму повинен з'являтися в самому електричному ланцюзі.

Коли у будь-якому провіднику з'являється електричний струм, навколо нього виникає магнітне поле.

  1. A conductor of any kind carrying an electric current, a magnetic field was set up about that conductor.
  2. A conductor of any kind have been carrying an electric current, a magnetic field is set up about that conductor.
  3. A conductor of any kind carrying an electric current, a magnetic field is set up about that conductor.

Останній ефект, який необхідно розглянути, - хімічний ефект.

  1. The last effect is considered to be the chemical one.
  2. The last effect to be considered is the chemical one.
  3. The last effect would be considered the chemical one.

Відомо, що хімічний ефект виникає, коли електричний струм проходить 

крізь рідину.

1. The chemical effect is known to occur when an electric current flows through a liquid.

2. The chemical effect is famous to occur when an electric current flows through a liquid.

3. The chemical effect may be known to occur when an electric current flows through a liquid.

Саме рух електричних зарядів породжує магнітні сили.

  1. The motion of the electric charges produces the magnetic forces.
  2. It is the motion of the electric charges that produces the magnetic forces.
  3. The motion of the electric charges is certain to produce the magnetic forces.

VI. Answer the questions:

  1. What effects does the current flow produce?
  2. How is the heating effect detected?
  3. What does the heat produced depend upon?
  4. What is called “heat loss”?
  5. How is the magnetic effect set up?
  6. What is the main condition of the magnetic effect existence?
  7. When does the chemical effect occur?

 VII. Complete the text with the missing words from the box.


1. current

2. charge

3. electrolyte

4. carriers

5. second

6. conductor

7. ammeter

8. electrons

9. direction

10. ampere

      Electric current is a flow of electric charge through a medium. This charge

is typically carried by moving electrons in a...such as wire. It can also be

carried by ions in an…., or by both ions and.....in a plasma.

      The SI unit for measuring the rate of ….flow of electric charge is the .., which is charge flowing through some surface at the rate of one coulomb per ...... Electric…… is measured using an ........

      To provide a definition of current that is independent of the type of charge……flowing, conventional current is defined to flow in the same ……as positive charges.

 

VIII. Fill in the chart:

Electric current effect

Practical application

  1. heating effect
  2. …..
  3. chemical effect

…..

use of electric motor

…..

IX. Speak about the principal effects of an electric current, using the text and chart above.

 

UNIT 4

I. Read the text.

Electric Circuits

The concepts of electric charge and potential are very important in the study of electric currents. When an extended conductor has different potentials at its ends, the free electrons of the conductor itself are caused to drift from one end to the other. The potential difference must be maintained by some electric source such as electrostatic generator or a battery or a direct current generator. The wire and the electric source together form an electric circuit, the electrons are drifting around it as long as the conducting path is maintained.

There are various kinds of electric circuits such as: open circuits, closed circuits, series circuits, parallel circuits and short circuits.

To understand the difference between the following circuit connections is not difficult at all. If the circuit is broken or “opened” anywhere, the current is known to stop everywhere. The circuit is broken when an electric device is switched off. The path along which the electrons travel must be complete otherwise no electric power can be supplied from the source to the load. Thus the circuit is “closed” when an electric device is switched on.

When electrical devices are connected so that the current flows from one device to another, they are said “to be connected in series”. Under such conditions the current flow is the same in all parts of the circuit as there is only a single path along which it may flow. The electrical bell circuit is considered to be a typical example of a series circuit. The “parallel” circuit provides two or more paths for the passage of current. The circuit is divided in such a way that part of the current flows through one path and part through another. The lamps in the houses are generally connected in parallel.

The “short” circuit is produced when the current can return to the source of supply without control. The short circuits often result from cable fault or wire fault. Under certain conditions the short circuit may cause fire because the current flows where it was not supposed to flow. If the current flow is too great a fuse is used as a safety device to stop the current flow.

II. Guess the meaning of the following international words:

concept, potential, electrostatic generator, aluminum, parallel, typical, control.

III. Give the English equivalents for the following words and word combinations:

    1) електричні ланцюги, 2) електричний заряд, 3)провідник, 4) опір, 5) рух електронів, 6) ізолятор, 7)коротке замикання, 8) енергія.

IV. Say whether these sentences are true or false:

1. When an extended conductor has the same potential at its ends, free electrons are drifting from one end to another.

2. The wire and the electric source together form an electric circuit.

3. A path of any material will allow current to exist.

4. Silver, copper and gold oppose very strongly.

5. The slighter the opposition is, the better the insulator is.

6. There is only one type of electric circuit.

7. We close the circuit when we switch on our electric device.

      V. Match the words 1-10 with their definitions A-J.

1. electricity

A.

a substance that readily conducts e.g. electricity and heat

2. conductor

B.

a form of energy usually carried by wires or produced by batteries used to power machines and computing, communications, lighting, and heating devices.

3. insulator

C.

an article which is bought or sold

4. circuit

D.

a material or an object that does not easily allow heat, electricity, light, or sound to pass through it.

5. commodity

E.

an extremely small piece of matter; speck

6. gravitation

F.

the force of attraction that bodies exert on one another as a result of their mass

7. particle

G.    the extent to which a body or medium transmits light,

 

 

sound, or some other form of energy

8. power

H.

a reciprocal relation between two or more things

9. transmission

I.

a complete path through which an electric current can flow

10. correlation

J.

the rate at which work is done, expressed as the amount of work per unit time and commonly measured in units such as the watt and horsepower

VI. Complete the sentences using the text:

1. The potential difference must be maintained by …

2. Materials that offer slight opposition are called …

3. The best insulators are …

4. There are various kinds of electric circuits such as …

5. We “open” the circuit when …

6. We “close” the circuit when …

7. The “short” circuit is produced when …

8. A fuse is …

VII. Answer the questions:

1. What concepts are very important in study of electric current?

2. What forms an electric circuit?

3. What materials are the best conductors and insulators?

4. What kinds of  electric circuits do you know?

5. How can we open and close the circuit?

6. When are electrical devices connected in series?

7. What is an example of a series circuit?

8. What can you say about “parallel” circuits?

9. What does the short circuit often result from?

VIII. Talk on the types of electric circuits.

 

UNIT 5

I. Read the text.

Alternating Current

Current is defined as increment of electrons. The unit for measuring current was named in honor of A.M. Ampere, the French physicist. Thus it is called ampere. The symbol for current is I. The electric current is a quantity of electrons flowing in a circuit per second of time. The electrons move along the circuit because the e.m.f. drives them. The current is directly proportional to the e.m.f.

A steam of electrons in a circuit will develop a magnetic field around the conductor along which the electrons are moving. The strength of the magnetic field depends upon the current strength along the conductor. The direction of the field is dependant upon the direction of the current.

 If the force causing the electron flow is indirect, the current is called direct (d.c.). If the force changes its direction periodically the current is called alternative (a.c.).

Alternating current is the current that changes direction periodically. The electrons leave one terminal of the power supply, flow out along the conductor, stop, and then flow back toward the same terminal. A voltage that caused current reverses its polarity periodically. This is properly called an alternating voltage. The power supply that provides the alternating voltage actually reverses the polarity of its terminals according to a fixed periodic pattern. A given terminal will be negative for a specific period of time and drive electrons out through the circuit. Then, the same terminal becomes positive and attracts electrons back from the circuit. This voltage source cannot be a battery. It must consist of some types of rotating machinery.

II. Guess the meaning of the following international words:

1) physicist, 2) ampere, 3) symbol, 4) second, 5) polarity, 6) period, 7) battery.

III. Translate into Ukrainian the words and expression from the text:

1) increment of electrons; 2) measuring; 3) to drive; 4) directly proportional; 5) conductor; 6) strength; 7) causing force; 8) terminal; 9) to flow; 10) to reverse.

IV. Give the English equivalents for the words below:

1) змінний струм, 2) за секунду, 3) кількість електронів, 4) потік електронів, 5) магнітне поле, 6) напрям, 7) залежати, 8) посилення, 9) джерело напруги, 10) ротаційний механізм.

V. Complete the sentences using the text:

  1. The electric current is …
  2. The unit for measuring current is …
  3. A steam of electrons in a circuit will develop …
  4. The current is called direct if …
  5. The current is called alternating if…
  6. Alternating voltage is …
  7. Alternating voltage source cannot be …

VI. Answer the questions:

  1. Why do electrons move along the circuit?
  2. What does the strength of the magnetic field depend upon?
  3. What does the direction of the field depend upon?
  4. What is the way of alternating current electrons?
  5. How does the alternating voltage power supply reverse the polarity of terminals?

VII. Talk on the properties of the electric current and its types.

 

UNIT 6

I. Read the text.

CONDUCTORS AND INSULATORS

All substances have some ability of conducting the electric current, however, they differ greatly in the ease with which the current can pass through them. Solid metals conduct electricity with ease while non-metals do not allow it to flow freely. Thus, there are conductors and insulators.

What do the terms "conductors" and "insulators" mean?

This difference is expressed by what is called electrical conductivity of the body. It depends upon the atomic constitution of the body. Substances through which electricity is easily transmitted are called conductors. Any material that strongly resists the electric current flow is known as an insulator.

Conductance, that is the conductor's ability of passing electric charges, depends on the four factors: the size of the wire used, its length and temperature as well as the kind of material to be employed.

A large conductor will carry the current more readily than a thinner one. To flow through a short conductor is certainly easier for the current than through a long one in spite of their being made of similar material. Hence, the longer the wire, the greater is its opposition, that is resistance, to the passage of current.

There is a great difference in the conducting ability of various substances. Almost all metals are good electric current conductors. The best conductors are silver, copper, gold and aluminum. Nevertheless, copper carries the current more freely than iron; and silver, in its turn, is a better conductor than copper. Copper is the most widely used conductor. The electrically operated devices are connected to the wall socket by copper wires.

A material which resists the flow of the electric current is called an insulator.

The higher the opposition is, the better the insulator is. There are many kinds of insulation used to cover the wires. The kind used depends upon the purposes the wire or cord is meant for. The insulating materials generally used to cover the wires are rubber, asbestos, glass, plastics and others.  The best insulators are oil, rubber and glass.

Rubber covered with cotton, or rubber alone is the insulating material usually used to cover desk lamp cords and radio cords.

Glass is the insulator to be often seen on the poles that carry the telephone wires in city streets. Glass insulator strings are usually suspended from the towers of high voltage transmission lines. One of the most important insulators of all, however, is air. That is why power transmission line wires are bare wires depending on air to keep the current from leaking off.

Conducting materials are by no means the only materials to play an important part in electrical engineering. There must certainly be a conductor, that is a path, along which electricity is to travel and there must be insulators keeping it from leaking off the conductor.

  1. Give the Ukrainian equivalents for the words and word combinations below:

1) conductors; 2) insulators; 3) transmit; 4) resistance; 5) passage of current; 6) socket; 7) to connect to; 8) cord; 9) high voltage transmission line; 10) leak off.

  1.   Find in the text the sentences with the following related words and translate them:

conducting – conductor – conductivity – conductance.

  1. Make up sentences corresponding to the information given in the text

Copper

 

 

is

used to cover desk lamp cords

Silver

one of the most important insulators of all

Rubber

the most widely used conductor

Glass

a better conductor than copper

Iron

not so good conductor as copper

Air

the insulator usually used on the city street poles and high voltage transmission lines

  1. State questions to the underlined words:

1) Solid metals conduct electricity with ease.

2) Conductance depends on the four factors.

3) There are many kinds of insulation used to cover the wires.

4) Insulators keep electricity from leaking off the conductor.

5) Conductors play an important role in electrical engineering.

  1. Say whether these sentences are true or false:

1) Electrical conductivity of a body depends upon its atomic constitution.

2) There is no difference in the conducting ability of various substances.

3) The longer the wire is the weaker its opposition is.

4) The kind of the insulating material depends upon the purpose it is meant for.

5) Conductors are substances through which electricity is easily transmitted.

6) Insulators do not allow the electric current to flow freely.

VII. Talk on the conducting ability of various substances and their application in electrical engineering. Use the table in Task IV.

UNIT 7

I. Read the text.

SEMICONDUCTORS

There are materials that really occupy a place between the conductors of the electric current and the non-conductors. They are called semiconductors. These materials conduct electricity less readily than conductors but much better than insulators.

Semiconductors include almost all minerals, many chemical elements, a great variety of chemical compounds, alloys of metals, and a number of organic compounds. Like metals, they conduct electricity but they do it less effectively. In metals all electrons are free and in insulators they are fixed. In semiconductors electrons are fixed, too, but the connection is so weak that the heat motion of the atoms of a body easily pulls them away and sets them free.

Minerals and crystals appear to possess some unexpected properties. It is well known that their conductivity increases with heating and falls with cooling. As a semiconductor is heated, free electrons in it increase in number, hence, its conductivity increases as well.

Heat is by no means the only phenomenon influencing semiconductors. They are sensitive to light, too. Take germanium as an example. Its electrical properties may greatly change when it is exposed to light. With the help of a ray of light directed at a semiconductor, we can start or stop various machines, effect remote control, and perform lots of other useful things. Just as they are influenced by falling light, semiconductors are also influenced by all radiation. Generally speaking, they are so sensitive that a heated object can be detected by its radiation.

Such dependence of conductivity on heat and light has opened up great possibilities for various uses of semiconductors. The semiconductor devices are applied for transmission of signals, for automatic control of a variety of processes, for switching on engines, for the reproduction of sound, protection of high-voltage transmission lines, speeding up of some chemical reactions, and so on. On the one hand they may be used to transform light and heat energy directly into electric energy without any complex mechanism with moving parts, and on the other hand, they are capable of generating heat or cold from electricity.

Russian engineers and scientists turned their attention to semiconductors many years ago. They saw in them a means of solving an old engineering problem, namely, that of direct conversion of heat into electricity without boilers or machines. Semiconductor thermocouples created in Ukraine convert heat directly into electricity just as a complex system consisting of a steam boiler, a steam engine and a generator does it.

II. Give the English equivalents for the words and word combinations below:

1) напівпровідник; 2) хімічна сполука; 3) сплав; 4) звільняти; 5) властивість; 6) збільшувати(ся); 7) охолодження; 8) чутливий до; 9) виставляти; 10) промінь; 11) направляти на; 12) дистанційне керування; 13) знаходити, виявляти; 14) захист; 15) прискорення; 16) розв'язати інженерну проблему; 17) термоелемент.

III. Guess the meaning of the following international words:

element, organic, mineral, crystal, phenomenon, automatic, control, process, reproduction, conversion, boiler.

 

IV. Join the beginnings and ends:

1. Semiconductors are sensitive to…

… conductors of the electric current and non-conductors.

2. Semiconductors convert heat into …

… dependence of conductivity on heat and light.

3. Semiconductors occupy a place between

… heat and light.

4. Semiconductors conduct electricity …

…into electricity without machines.

5.Great possibilities for various uses of semiconductors are connected with …

… less effectively than metals.

6. As a semiconductor is heated …

… its conductivity increases as well.

V. Insert words and expressions:

1) Semiconductors include a great variety of (хімічні сполуки), (сплави металів).

2) Minerals and crystals appear to possess some unexpected (властивості). Their conductivity increases with (нагрівання) and falls with (охолодження).

3) With the help of a ray of light directed at a semiconductor, we can effect (дистанційне керування).

4) The semiconductor devices are applied for (автоматичний контроль) of a variety of processes, for the (відтворення) of sound, (прискорення) of some chemical reactions.

5) (Термоелементи) created in Ukraine convert heat directly into electricity.

VI. Answer the questions:

1) What do semiconductors include? 2) How does the atomic structure of semiconductors influence their properties? 3) What phenomena influence semiconductors? 4) What are the semiconductor devices applied for? 5) How do semoconductors help in solving engineering problems?

VII. Talk on the properties of semiconductors and their practical application.

 

UNIT 8

I. Read the text.

CONDUCTANCE AND RESISTANCE

In the hydraulic analogy, current flowing through a wire (or resistor) is like water flowing through a pipe, and the voltage drop across the wire is like the pressure drop which pushes water through the pipe. Conductance is proportional to how much flow occurs for a given pressure, and resistance is proportional to how much pressure is required to achieve a given flow.

The voltage drop (i.e., difference in voltage between one side and the other), not the voltage itself, is the driving force pushing current through a resistor. In hydraulics, it is similar: The pressure difference between two sides of a pipe, not the pressure itself, determines the flow through it. For example, there may be a large water pressure above the pipe, which tries to push water down through the pipe. But there may be an equally large water pressure below the pipe, which tries to push water back up through the pipe. If these pressures are equal, no water will flow.

The resistance and conductance of a wire, resistor, or other element is generally determined by two factors: geometry (shape) and materials.

Geometry is important because it is more difficult to push water through a long, narrow pipe than a wide, short pipe. In the same way, a long, thin copper wire has higher resistance (lower conductance) than a short, thick copper wire.

Materials are important as well. A pipe filled with hair restricts the flow of water more than a clean pipe of the same shape and size. In a similar way, electrons can flow freely and easily through a copper wire, but cannot as easily flow through a steel wire of the same shape and size, and they essentially cannot flow at all through an insulator like rubber, regardless of its shape. The difference between, copper, steel, and rubber is related to their microscopic structure and electron configuration, and is quantified by a property called resistivity.

 

        II. Choose the right option for every question.

1. Current flowing through a wire (or resistor) is like..flowing through a pipe.

a) water

b) gas

c) solids

2. The voltage drop across the wire is like the .... drop which pushes

     water through the pipe.

a) flow

b) pressure

c) rain

3. The voltage drop is the..in voltage between one side and the other.

a) reciprocals

b)  difference

c) resistance

4. The resistance and conductance of a wire, resistor, or other element is generally  

    determined by.....factors.

a)  three

b) one

c) two

5. Electrons can flow freely and easily through..a wire.

a) steel

b) rubber

c)  copper

      III. Translate the sentences from English into Ukrainian.

1. Resistivity is electrical resistance of a conductor of unit cross-sectional area and unit length.

2. In the hydraulic analogy, current flowing through a wire (or resistor) is like water flowing through a pipe.

3. Resistance is proportional to how much pressure is required to achieve a given flow.

4. The resistance and conductance of a wire, resistor, or other element is generally determined by two factors: geometry (shape) and materials.

5. A long, thin copper wire has higher resistance (lower conductance) than a short, thick copper wire.

6. The pressure difference between two sides of a pipe, not the pressure itself, determines the flow through it.

7. Resistivity of metallic conductors generally increases with a rise in temperature.

8. A photoresistor or light dependent resistor (LDR) is a resistor whose resistance decreases with increasing incident light intensity.

9. A photoelectric device can be either intrinsic or extrinsic.

10. An electric current flowing in a loop of superconducting wire can persist indefinitely with no power source.

      IV. Answer the questions.

1. What is conductance proportional to?

2. What is the driving force pushing current through a resistor?

3. What kind of wire has higher resistance?

4. What materials are more conductive?

5. What is the difference between copper, steel and rubber?

 

UNIT 9

I. Read the text.

ELECTRICITY AND MAGNETISM

TEXT 1

Electromotive Force

When free electrons are dislodged from atoms, electrical energy is released. Chemical reaction, friction heat and electromagnetic induction will cause electrons to move from one atom to another. Whenever energy in any form is released, a force called electromotive (e. m. f.) is developed.

If the force exerts its effort always in one direction, it is called direct; and if the force changes its direction of exertion periodically, it is called alternating. The chemical reaction in a dry cell, heat and friction are sources of a unidirectional force. Electromagnetic induction produces an alternating force. The direction of force depends on the direction in which the field is cut. Whenever an e. m. f. is developed, there is also a field of energy called an electrostatic field, which can be detected by an electroscope and measured by an electrometer.

TEXT 2

Electromagnetic Induction

An electromotive force is induced in the conductor when there is a change in the magnetic field surrounding a conductor. This induced electromotive force may be produced in several ways as follows:

a) A conductor may move in a stationary magnetic field of constant strength.

b) A stationary conductor may be exposed to a moving magnetic field of constant strength.

c) The strength of the field surrounding the conductor may change without any motion of conductor or magnetic circuit.

The electromotive force induced by motion of a conductor or a magnetic flux is the same when the conductor rotates and the flux is stationary or the flux rotates and the conductor is stationary. If both, conductor and flux, rotate in the same direction at the same speed, no electromotive force will be produced, if they rotate at the same speed but in opposite directions, the electromotive force induced would be twice as that which would be induced, if one of them was stationary. An electromotive force is not induced when a conductor is moved parallel to the lines of force, but only when it moves at an angle with these lines.

Any motion across the direction of the lines, however, will produce an electromotive force in the conductor. For this reason, the conductor is said to „cut" the lines of force. The actual electromotive force induced in the conductor depends upon the nature at which the flux is cut.

TEXT 3

ELECTROMOTIVE FORCE AND RESISTANCE

The electromotive force is the very force that moves the electrons from one point in an electric circuit towards another. In case this e.m.f. is direct, the current is direct. On the other hand, were the electromotive force alternating, the current would be alternating, too. The e.m.f. is measurable and it is the volt that is the unit used for measuring it. A current is unable to flow in a circuit consisting of metallic wires alone. A source of an e.m.f. should be provided as well. The source under consideration may be a cell or a battery, a generator, a thermocouple or a photocell, etc.

In addition to the electromotive force and the potential difference reference should be made to another important factor that greatly influences electrical flow, namely, resistance. All substances offer a certain amount of opposition, that is to say resistance, to the passage of current. This resistance may be high or low depending on the type of circuit and the material employed. Glass and rubber offer a very high resistance and, hence, they are considered as good insulators. All substances do allow the passage of some current provided the potential difference is high enough.

Certain factors can greatly influence the resistance of an electric circuit. They are the size of the wire, its length, and type. In short, the thinner or longer the wire is, the greater the resistance offered is.

II. Give the English equivalents for the words below. Find in the text the sentences with these words and translate them:

1) тертя; 2) електрорушійна сила; 3) елемент; 4) паралельне з'єднання; 5) опір; 6) електромагнітна індукція; 7) змінний струм; 8) постійна напруга; 9) фотоелемент.

III. Guess the meaning of the following international words and translate them:

reaction, electrostatic, electrometer, electroscope, volt, metallic.

IV. Say whether these sentences are true or false:

1. Alternating force always exerts its effort in one direction.

2. Alternating force is produced by electromagnetic induction.

3. The electromotive force is induced by motion of a conductor.

4. Resistance is an important factor that greatly influences electrical flow.

5. The type of the material employed doesn’t influence the resistance.

V. Answer the questions:

1) What factors cause the motion of electrons from one atom to another? 2) When is the electromotive force developed? 3) When does an electrostatic field appear? 4) How is the electromotive force induced? 5) What unit is used for measuring the electromotive force? 6) What are the sources of electromotive force? 7) What is called “resistance”? 8) How do the types of circuit and material influence the resistance? 9) Name the factors that influence the resistance of an electric circuit.      

UNIT 10

I. Read the text.

Dynamos

The term „dynamo" is applied to machines which convert either mechanical energy into electrical energy or electrical energy into mechanical energy by utilizing the principle of electromagnetic induction. A dynamo is called a generator when mechanical energy supplied in the form of rotation is converted into electrical energy. When the energy conversion takes place in the reverse order the dynamo is called a motor. Thus a dynamo is a reversible machine capable of operation as a generator or motor as desired.

A generator does not create electricity, but generates or produces an induced electromotive force, which causes a current to flow through a properly insulated system of electrical conductors external to it. The amount of electricity obtainable from such a generator is dependent upon the mechanical energy supplied. In the circuit external to a generator the e.m.f. causes the electricity to flow from a higher or positive potential to a lower or negative potential. In the internal circuit of a generator the e.m.f. causes the current to flow from a lower potential to a higher potential. The action of a generator is based upon the principles of electromagnetic induction.

The dynamo consists essentially of two parts: a magnetic field, produced by electromagnets, and a number of loops or coils of wire wound upon an iron core, forming the armature. These parts are arranged so that the number of the magnetic lines of force of the field threading through the armature, coils will be constantly varied, thereby producing a steady e.m.f. in the generator or a constant torque in the motor.

II. Fill in the gaps with the words given below:

to convert, reversible, obtainable, induction, loops.

1. The term “dynamo” is applied to machines which ..... either mechanical energy into electrical or on the contrary electrical energy into mechanical energy.

2. A dynamo is a ..... machine capable of operation as a generator or motor as desired.

3. The amount of electricity ..... from such a generator is dependent upon the mechanical energy supplied.

4. The action of a generator is based upon the principles of electromagnetic .......

5. The dynamo consists of two parts: a magnetic field, produced by electromagnets, and a number of ..... or coils of wire.

III. Find the Ukrainian equivalents for the following English words and word combinations:

1) to be applied to smth.; 2) to convert smth. into smth.; 3) rotation; 4) to utilize; 5) a properly insulated system; 6) internal (external) circuit; 7) capable of operation; 8) positive (negative) potential; 9) reverse order; 10) energy conversion.

IV. Answer the questions.

1. What term can be applied to machines converting mechanical energy into electrical and vice versa?

2. What kind of machine is a dynamo?

3. What is the function of a generator?

4. What is the action of a generator based upon?

5. What parts does the dynamo consist of?

V. Talk on the dynamo action.

UNIT 11

I. Read the text.

GENERATORS

The powerful, highly efficient generators and alternators that are in use today operate on the same principle as the dynamo invented by the great English scientist Faraday in 1831.

Dynamo-electric machines are used to supply light, heat and power on a large scale. These are the machines that produce more than 99.99 per cent of all the world's electric power.

There are two types of dynamos – the generator and the alternator. The former supplies d.c. which is similar to the current from a battery and the latter provides a.c. To generate electricity both of them must be continuously provided with energy from some outside source of mechanical energy such as steam engines, steam turbines or water turbines.

A generator is an electric machine, which converts mechanical energy into electric energy. There are direct-current (d.c.) generators and alternating-current (a.c.) generators. Their construction is much alike. A d.c. generator consists of stationary and rotating elements. The stationary elements are: the yoke or the frame and the field structure. The yoke forms the closed circuit for the magnetic flux. The function of the magnetic structure is to produce the magnetic field.

The rotating elements are: true armature and the commutator. They are on the same shaft. The armature consists of the core and the winding. The winding is connected to the commutator. With the help of the brushes on the commutator that conduct the electric current to the line the winding is connected to the external circuit. The stationary element of an a-c. generator is called a stator. The rotating element is called a rotor.

The essential difference between a d.c. generator and a.c. generator is that the former has a commutator by means of which the generated e. m. f. is made continuous, i.e. the commutator mechanically rectifies the alternating e.m.f. so that it is always of the same polarity.

D.c. generators are used for electrolytic processes such as electroplating. Large d.c. generators are employed in such manufacturing processes as steel making. The d.c. generator of small capacities is used for various special purposes such as arc welding, automobile generators, train lighting systems, etc. It also finds rather extensive use in connection with communication systems.

II. Give the Ukrainian equivalents for the following English words and word combinations:

1) generator; 2) alternator; 3) steam turbine; 4) water turbine;   5) armature; 6) rotor; 7) stationary; 8) commutator; 9) stator; 10) yoke; 11. brushes; 12) core; 13) frame; 14) winding.

III. Fill in the blanks

1. A generator is an  electric machine, which a) … mechanical energy into electrical energy.

2. A direct-current generator consists of   в) … .

3. The dynamo was invented by c) … in 1831.

4. The d.c. generator is used for various purposes such as d) … .

IV. Work out the plan of the text.

V. Speak on the following points:

1. The construction of a generator.

2. The direct – current generators and their industrial application.

3. Industrial application of D.C. Generators.

 

UNIT 12

I. Read the text.

Main Structural Elements of a D. C. Machine

A direct-current machine consists of two main parts, a stationary part, usually called the stator, designed mainly for  producing a magnetic flux, and a rotating part, called the armature or the rotor. The stationary and rotating parts should be separated from each other by an air-gap. The stationary part of a d.c. machine consists of main poles, designed to create the main magnetic flux; commutating poles interposed between the main poles; and a frame. It should be noted here that sparkless operation of the machine would be impossible without the commutating poles. Thus, they should ensure sparkless operation of the brushes at the commutator.

The main pole consists of a laminated core the end of which facing the armature carries a pole shoe and a field coil through which direct current passes. The armature is a cylindrical body rotating in the space between the poles and comprising a slotted armature core, a winding inserted in the armature slots, a commutator, and a brush gear.

The frame is the stationary part of the machine to which are fixed the main and commutating poles and by means of which the machine is bolted to its bedplate. The ringshaped portion which serves as the path for the main and commutating pole fluxes is called the yoke. End-shields or frame-heads which carry the bearings are also attached to the frame.

Of these main structural elements of the machine the yoke, the pole cores, the armature core and the air-gap between the armature core and the pole core are known to form the magnetic circuit while the pole coils, the armature windings, the commutator and brushes should form the electric circuit of the machine.

II. Translate the following phrases, using the given variants of translation.

To consistскладатися з: to consist of a stationary part and a rotating part; separatedокремий, ізольований: the stationary and rotating parts should be separated from each other by an air gap; to serveслужити в якості чого-небудь: the ringshaped portion or yoke serves as a path for the main and commutating pole fluxes.

  1. Join the beginnings and the ends

Beginnings

Ends

The stationary parts of a d.c. machine are ....

a laminated core the end of which carries a pole shoe and a field coil

The two main parts of a direct current machine are ....

main poles, commutating poles and a frame

The main pole consists of ....

A stationary part or stator and a rotating part, called the armature or the rotor

 

IV. Arrange synonyms in pairs and memorize them:

a) to consist of; to be separated from; to create; to be interposed between; to pass; to rotate;

в) to be divided with; to produce; to introduce into; to permeate; to roll; to revolve; to comprise.

V. Write out the names of the machine parts and describe their operational characteristics.

UNIT 13

I. Read the text.

The Alternator

The alternator is an electric machine for generating an alternating current by a relative motion of conductors and a magnetic field. The machine usually has a rotating field and a stationary armature. In a synchronous alternator the magnetic field is excited with a direct current. The direction of an induced e.m.f. is reversed each time when a conductor passes from a pole of one polarity to a pole at another polarity. Most machines of this type are used for lighting and power, but there are alternators with a revoking armature and a stationary field. They are used in small sizes mostly for special purposes.

Any electrical machine is reversible. When a machine is driven by a source of mechanical power, it works as a generator and delivers electrical power. If it is connected to a source of electrical power, it produces mechanical energy, and operates as a motor. The alternator may also be operated as a motor.

The a.c. generator, or alternator, does not differ in principle from the d.c. generator. The alternator consists of a field structure and an armature. The field structure is magnetized by a field winding carrying a direct current. An electromotive force is generated in tine winding of the armature. In alternators the field is usually the rotating element and the armature is stationary. This construction has a number of advantages. Only two rings are needed with a rotating field. These rings carry only a relatively light field current, at a voltage generally of 125, and seldom exceeding 250. The insulation of such rings is not difficult. A stationary armature requires no slip rings. The leads from the armature can be continuously insulated from the armature winding to the switchboard, leaving no bare conductor. The alternator with a rotating field may be further divided into the vertical and the horizontal types.

The vertical type is usually applied for large water-wheel generators where it is desirable to mount the water turbine below the generator. The more common horizontal type is used with diesel and steam engine drive. A low-speed alternator of this type is suitable for a diesel engine drive, a high speed alternator is suitable for a steam turbine drive.

II. Form nouns, denoting devices with the help of the suffix -or. Translate them.

To alternate, to commute, to conduct, to generate.

III. Read the text and write out the key words, characterizing the alternator.

IV. Translate the following word combinations paying attention to the Participle II.

1) The leads from the armature can be continuously insulated from….. ; 2) the vertical type of alternator applied for large water-wheel generator; 3) alternators with a revoking armature and a stationary field used in small sizes mostly for special purposes; 4) a machine driven by a source of mechanical power; 5) the direction of an induced e.m.f. …

V. State 5 questions to the text.

VI. Points for discussion:

1. The structure of the alternator.

2. The application of the alternator.

 

UNIT 14

I. Read the text.

The Induction Motor

An induction motor like any other motor consists of a stationary part, the stator, and a rotating part, the rotor. The rotor of an induction motor is not connected electrically to the source of power supply. The currents which circulate in the rotor conductors are the result of voltage induced in the rotor in the magnetic field set up by the stator. The rotor is fitted with a set of conductors in which currents flow. As these conductors lie in the magnetic field produced by the stator, a force is exerted on the conductors and the rotor begins to revolve.The operation of the motor depends upon the production of a rotating magnetic field. The speed at which the field of an induction motor turns is called the synchronous speed of the field or of the motor.

The induction motor is the simplest of the various types of electric motors and it has found more extensive application in industry than any other type. It is made in two forms – the squirrel cage and the wound rotor, the difference being in the construction of the rotor.

The stator of the induction motor has practically the same slot and winding arrangement as the alternator and has the coils arranged to form a definite number of poles, the number of poles being a determining factor in connection with the speed at which the motor will operate. The rotor construction, however, is entirely different.

The squirrel-cage rotor is a simpler form and has been used in many machines.

Instead of coils the winding consists of heavy copper bars.

The wound-rotor type has a winding made up of well-insulated coils, mounted in groups whose end connections are brought out to fill in rings. The purpose of this winding is to provide for variation in the amount of resistance included in the rotor circuit.

Provision for ventilation is made by leaving passageways through the core and frame, through which air is forced by fan vanes mounted on the rotor. In main cases the motors now built in as an integral part of the machine it is to drive.

There being no electrical connection between the rotor circuits of the induction motor and the stator circuits, or supply line, the currents which flow in the rotor bars or windings correspond to the induced voltages, the action being similar to that of a transformer with a movable secondary. With but a single-phase winding on the stator, however, the torques produced in the two halves of the rotor would be in apposition, and the motor would not start. With more than one set of windings two for a two-phase motor, three for a three-phase motor a resultant field is produced which has the effect of cutting across the rotor conductors and induces voltages in them. This field is considered to be revolving at uniform speed.

The term „revolving field" should not be taken to mean actual revolution of flux lines. The magnetic field from the coils of each phase varies in strength with changes in current value but does not move around the stator. The revolutions are those of the resultant of the three, or two, phases, as the case may be. A motor with a single-phase winding is not self-starting but must be provided with an auxiliary device of some kind to enable the motor to develop a starting torque. The effect of the revolving field is the same as would result from actual revolution of a stator having direct-current poles. As voltages have been induced in the bars or windings of the rotor, currents start flowing as a result of these voltages, and a torque is produced which brings the motor up to speed.

II. Find in the text the English equivalents for the word combinations given below:

1) асинхронний двигун; 2) нерухома частина; 3) частина,що обертається; 4) провідник; 5) одночасна швидкість; 6)широке застосування; 7) паз; 8) механізм обмотки; 9)трансформатор; 10) момент, що обертається.

III. Complete the following sentences according to the contents of the text.

1. The Induction Motor is …….. of electric motors and is more extensively applied in industry than any other type. 

2. The purpose of this winding is …….. for variation in the amount of resistance included in the rotor circuit.

3. The effect of …. is the same as would result from actual revolution of a stator having direct-current poles.

IV. Answer the following questions:

1. What parts does the induction motor consist of?

2. What are the names of its rotating and stationary parts?

3. What does the motor operation depend on?

4. How can the difference between stator and rotor construction be explained?

5. What does the term «revolving field» mean?

V. Translate the sentences from the text paying attention to the Nominative Absolute Participle Constructions:

1. The induction motor is made in two forms – the squirrel cage and the wound rotor, the difference being in the construction of the rotor.

2. The stator of the induction motor has practically the same slot and winding arrangement as the alternator and has the coils arranged to form a definite number of poles, the number of poles being a determining factor in connection with the speed at which the motor will operate.

3. There being no electrical connection between the rotor circuits of the induction motor and the stator circuits, or supply line, the currents which flow in the rotor bars or windings correspond to the induced voltages, the action being similar to that of a transformer with a movable secondary.

VI. Discuss the following points:

  1. The construction of an induction motor;
  2. Induction motor operation principle.

 

 

 

UNIT 15

I. Read the text.

Types of Induction Motors

TEXT 1

SINGLE-PHASE MOTOR

The single-phase induction motor differs from poly-phase type principally in the character of its magnetic field, as an ordinary single-phase winding will not produce a rotating field, but a field that is oscillating, and the induced currents and poles produced in the rotor by this field will tend to produce equal torque in opposite directions, therefore, the rotor cannot start to revolve. However, if the rotor can in some manner be made to rotate at a speed corresponding to the frequency of the current in the stator windings then the reaction of the stator and rotor flux is such as to produce a torque that will keep the rotor revolving.

In practice the starting of single-phase induction motors is accomplished by two general methods applicable to small-sized motors only.

First: the split-phase method, in which an auxiliary stator winding is provided for starting purposes only, this winding being displaced from the main stator winding by 90 electrical degrees. It has a higher inductance than the main stator winding, thus causing the currant in it to lag far enough behind the current in the main winding to produce a shifting or rotating field during the starting period, which exerts a starting torque on the rotor sufficient to cause rotation.

When nearly normal speed has been reached the auxiliary winding is out of circuit by a switch and clutch in the motor, which operates automatically by centrifugal force, and the rotor continues to run as a single-phase motor. The starting torque of such motions being limited, they are frequently constructed with the rotor arranged to revolve freely on the shaft at starting until nearly normal speed is reached, at which time the load is pitched up by the automatic action of a centrifugal clutch.

Second: an auxiliary winding may be connected to the single- phase line through an external inductance and a switch (for disconnecting the auxiliary winding from the circuit after the motor has reached normal speed), the introduction of the inductance in the auxiliary winding splitting the phase as before.

TEXT 2

THREE – PHASE INDUCTION MOTOR

The three-phase induction motor is the most commonly used type. It has been widely used in recent years. Normally an induction motor consists of a cylindrical core (the stator) which carries the primary coils in slots on its inner periphery. The primary coils are arranged for a three-phase supply and serve to produce a revolving magnetic field. The stator encircles a cylindrical rotor carrying the secondary winding in slots on its outer periphery.

The rotor winding may be one of two types: squirrel-cage and slip-ring for wound-rotor. In a squirrel-cage machine the rotor winding forms a complete closed circuit in itself. The rotor winding of a slip-ring machine is completed when the slip rings are connected either directly together or through some resistance external to the machine. The rotor shaft is coupled to the shaft of the driven mechanism.

The rotor is stationary at some instant of time. The revolving magnetic field of the stator winding cuts across the stationary rotor winding at synchronous speed and induces an e.m.f. in it. The e.m.f. will give rise to a current which sets up a magnetic field. The rotor starts rotating.

It is the interaction between the rotor current and the revolving magnetic field that has created torque and has caused the rotor to rotate in the same direction as the revolving magnetic field. Tine speed of the rotor is 98–95 per cent of the synchronous speed of the revolving magnetic field of the stator. Hence another name for this type of motor is the asynchronous motor. As a matter of fact, the speed of the rotor cannot be equal to synchronous speed. If it were equal to the latter, the revolving magnetic field would not be able to cut the secondary conductors and there would not be any current induced in the secondary winding and no interaction between the revolving field and the rotor current, and the motor would not run.

II. Translate the sentences, paying attention to the translation of the word one.

1. One should distinguish between single-phase and three-phase induction motors.

2. The new device is better the old one.

3. The three-phase induction motor type is the most commonly used one.

4. The rotor winding may be one of two types.

5. As a matter of fact the speed of the rotor cannot be equal to synchronous one.

III. Translate the sentences from the text paying attention to the Nominative Absolute Participle Constructions:

1. In the split-phase method an auxiliary stator winding is provided for starting purposes only, this winding being displaced from the main stator winding by 90 electrical degrees.

2. The starting torque of such motions being limited, they are frequently constructed with the rotor arranged to revolve freely on the shaft at starting until nearly normal speed is reached.

3. An auxiliary winding may be connected to the single-phase line through an external inductance and a switch, the introduction of the inductance in the auxiliary winding splitting the phase as before.

IV. Answer the following questions:

1. What way does the single-phase motor differ from the three-phase one?

2. What is the starting of single-phase induction motors accomplished by?

3. How can an auxiliary winding be connected to the single-phase line?

4. What parts does an induction motor consist of?

5. What are the two types of the rotor winding?

V. Work out the plan of the text.

VI. State 5 questions to the text.

 

UNIT 16

I. Read the text.

Transformers

One of the great advantages in the use of the alternating current is the ease with which the voltage may be changed by means of a relatively simple device known as a transformer. Although there are many different types of transformers and a great variety of different applications, the principles of action are the same in each case.

The transformer is a device for changing the electric current from one voltage to another. It is used for increasing or decreasing voltage. So the function of a transformer is to change voltage and current of an alternating system to meet requirements of the equipment used. It is known to be simple in elementary principle, and in construction that is it involves no moving parts. Transformers change voltage through electromagnetic induction.

The principle parts of a transformer are: an iron core and, usually, two coils of insulated windings. One of them is called primary, another is called the secondary. The primary coil is connected to the source of power. The secondary coil is connected to the load. Thus, the primary is the coil to which power is supplied. The secondary is the coil from which power is taken. In scientific terms to produce an alternating magnetic flux in the iron core an alternating current must be passed through the primary coil. This flux is considered to induce electromotive force in both primary and secondary coils. The secondary coil is open-circuited. Current flows in the secondary coil when the latter is connected to the external circuit or load. The flow of current in the secondary coil tends to reduce the flux in the core. Transformers are placed inside a steel tank usually with oil to improve the insulation and also to cool the device.

II. Guess the meaning of the following international words:

1) transformer; 2) type; 3) principle; 4) electric; 5) function; 6) elementary; 7) construction; 8) induction.

III. Translate into Ukrainian the words and expressions from the text:

1) advantage; 2) voltage; 3) relatively simple; 4) application; 5) increase; 6) to decrease; 7) to meet requirements; 8) moving parts; 9) iron core; 10) insulated windings; 11) load; 12) electromotive force; 13) to induce.

IV. Give the English equivalents to the words below:

1) змінний струм; 2) прилад; 3) принцип роботи (дії); 4) електромагнітна індукція; 5) котушка; 6) первинна (вторинна) обмотка; 7) джерело живлення; 8) магнітний потік; 9) сталевий контейнер; 10) остуджувати.

V. State questions to the underlined words:

  1. Voltage may be changed by a transformer. (General Question).
  2. Transformers change voltage through electromagnetic induction. (How …).
  3. Transformer is used for increasing or decreasing voltage.
  4. The primary winding is connected to the source of power. (…or…).
  5. Transformers are placed inside a steel tank. (Question-tag).

VI. Answer the questions:

  1. What kind of device is a transformer?
  2. What are the functions of a transformer?
  3. What are the principle parts of a transformer?
  4. What is the primary coil connected to?
  5. What is the secondary coil connected to?
  6. What are the principles of action of a transformer?
  7. Where are transformers usually placed?

      VII. Topics for discussion:

  1. Transformer as an electric device;
  2. Main parts and principles of a transformer action.

UNIT 17

I. Read the text.

Types of transformers

There are different types of transformers. By the purpose they are classified into step-up transformers and step-down transformers. In a step-up transformer the output voltage is larger than the input voltage, because the number of turns on the secondary winding is greater than that of the primary. In a step-down transformer the output voltage is less than input voltage as the number of turns on the secondary is fewer than that on the primary.

By the construction transformers are classified into core-type and shell-type transformers. In the core-type transformers the primary and the secondary coils surround the core. In the shell type transformers the iron core surrounds the coils. Electrically they are equivalent. The difference is in the mechanical construction.

By the methods of cooling transformers are classified into air-cooled, oilcooled and water-cooled transformers.

By the number of phases transformers are divided into singlephase and polyphase transformers.

Instrument transformers are of two types, current and potential.

A current transformer is an instrument transformer used for the transformation of a current at a high voltage into proportionate current at a low voltage. Current transformers are used in conjunction with a.-c. meters or instruments where the current to be measured must be of low value. They are also used where high-voltage current has to be metered. A voltage transformer, which is also called a potential transformer, may be defined as an instrument transformer for the transformation of voltage from one value to another. This transformer is usually of a step-down type because it is used when a meter is installed for use on a high-voltage system.

Transformers operate equally well to increase the voltage and to reduce it. The above process needs a negligible quantity of power. Transformers are widely used in our everyday life. All radiosets and all television sets are known to use two or more kinds of transformers. These are familiar examples showing that electronic equipment cannot do without transformers.

II. Guess the meaning of the following international words:

1) to classify; 2) method; 3) phase; 4) instrument; 5) system; 6) process; 7) radio; 8) television.

III. Give the English equivalents for the words below:

1) мета; 2)  трансформатор, що підвищує / знижує ; 3)  напруга, що входить / виходить /; 4) число витків; 5) механічний пристрій; 6) монофазні / поліфазні трансформатори; 7) висока / низька напруга; 8) визначати; 9) працювати; 10) незначна кількість.

IV. Translate into Ukrainian the words and expression from the text:

1) core-type / shell-type transformers; 2) air-cooled / oil-cooled / water-cooled transformers; 3) current / potential transformers; 4) in conjunction with smith; 5) to reduce; 6) electronic equipment.

V. Complete the sentences using the text:

  1. By the purpose transformers are …
  2. By the construction transformers are …
  3. By the methods of cooling transformers are …
  4. By the number of phases transformers are …
  5. Transformers operate equally well…
  6. Process of voltage changing needs…
  7. Familiar examples of transformer applications are …

VI. Answer the questions:

  1. What voltage is larger in a step-up transformer and why?
  2. What voltage is less in a step-down transformer and why?
  3. What is the construction of a core-type transformer?
  4. What is the construction of a shell-type transformer?
  5. What are the two types of instrument transformers?
  6. What are current transformers used for?
  7. What are potential transformers used for?

VI. Topics for discussion:

  1.  Types of transformers;
  2.  Use of transformers in everyday life.

 

UNIT 18

I. Read the text.

MEASUREMENTS OF ELECTRIC VALUES

The measurement of any physical quantity applies a determination of its magnitude in terms of some appropriate unit. In the case of simple fundamental quantities such as length, mass, or time, the units themselves are simple.

Electrical and magnetic quantities are, however, much less simple than length, mass, or time and cannot be measured directly by comparison with a material stand. The units in which these quantities are expressed have to be defined in terms of their observable affects obtained in experimental work, e.g. the weight of silver deposited in one second by a current when it is passed through a solution of silver nitrate is a measure of the magnitude of this current.

Electrical measurements can be classified broadly as neither absolute measurements, nor secondary measurements, but the first class of such measurements is rarely undertaken.

II. Guess the meaning of the following international words:

1) physical; 2) system; 3) fundamental; 4) material; 5) experimental; 6) absolute; 7) class.

III. Give the English equivalents to the words below:

1) вимірювання; 2) визначення; 3) відповідна одиниця; 4) бути таким, що відповідає; 5) порівняння; 6) досягати; 7) срібло; 8) широко; 9) піклуватися; 10) довжина.

IV. Translate into Ukrainian the words and expression from the text:

1) magnitude; 2) electrical and magnetic quantities; 3) to define; 4) observable affects; 5) to deposit; 6) secondary measurements; 7) to undertake.

 

V. Insert the words:

  1. Magnitude of any … (фізична величина)  must be determined in terms of some appropriate … (одиниця).
  2. (одиниці) are simple for simple … (основних) quantities.
  3. (електричні) and (магнітні) quantities cannot be measured simply.
  4. This units must be … (визначені) in terms of their … (спостережувані) effects obtained  in… (експериментальна робота).
  5. Absolute … (виміри) are … (рідко) undertaken.

VI. Answer the questions:

  1. What do we need to measure any physical quantity?
  2. What simple units for measuring of simple fundamental quantities do you know?
  3. Can electrical and magnetic quantities be measured directly by compare son with a material stand?
  4. How can we get units for defining electrical and magnetic quantities?
  5. What types of measurement do you know?

VII. State questions to the underlined words:

  1. Before we can measure, we must decide upon a system of units.
  2. Electric and magnetic quantities are much less simple than fundamental quantities.
  3. These quantities cannot be measured directly by comparison with a mate rial stand.
  4. Electrical measurements can be classified as neither absolute, nor seconddary measurements. (Question-tag).

VIII. Topics for discussion:

  1. Measurement of any physical quantity.
  2. Measurement of electric and magnetic quantities.

 

UNIT 19

I. Read the text.

Main Types of Ammeters and Voltmeters

Ammeters and voltmeters are made to operate on the same principle. The two principle kinds are the moving coil and moving iron types.

The electro-magnetic effect of the current is the one chiefly made use of for measuring purposes. Moving iron instruments employ this effect. The moving-iron instrument consists of a fixed coil of wire carrying the current which magnetizes a small piece of soft iron mounted on the instrument spindle. In construction there are two varieties: the repulsion type having two pieces of iron; and the attraction type having only one.

In the attraction type of the instrument the bobbin carrying the wire is oblong instead of circular, and has only a narrow slot-shaped opening in the center. A thin flat piece of iron, which is mounted on the instrument spindle, is sucked into this opening by magnetic attraction when the current flows. Either gravity or spring control can be used on moving-iron instruments and damping is usually by means of an air-dash-pot.

A moving-coil instrument may be compared to a miniature direct-current motor in which the armature never moves more than about a quarter of a revolution.

When a current flows through the coil of a moving-coil type ammeter, it becomes a magnet, one face being of north, and the other of south polarity. These poles are attracted by the poles of opposite polarity of the permanent magnet, and the coil tends to turn until its axis is parallel with the line joining the pole pieces of the permanent magnet. This movement is proportional to the current flowing and is opposed by the control springs. A pointer fixed to the coils moves over a graduated scale and indicates the current flowing in amperes. The scale of this type of instrument is evenly divided, but the positive terminal must be connected to the positive terminal of the supply, or the instrument tends to read backward. Such an instrument is only suitable for d.c. circuits.

Moving-coil instruments are more accurate and sensitive, but more expensive than those of moving-iron types.

II. Give the English equivalents for the following words and word-combinations:

    1) електромагнітний тип; 2) магнітно-електричний тип; 3) вісь; 4) репульсіонний  тип; 5) притягуючий тип; 6) довгастий; 7) встановлювати; 8) втягувати; 9) повітряний заспокоювач.

III. Translate into Ukrainian:

1) purpose; 2) employ; 3) slot-shaped; 4) magnetic attraction; 5) damp; 6) revolution; 7) pole; 8) axis; 9) pointer; 10) graduated scale.

IV. Answer the questions:

  1. What are the two principle kinds of ammeters and voltmeters?
  2. What is the construction of a moving iron instrument?
  3. What are the two types of moving iron instrument?
  4. How does a moving coil instrument work?
  5. What instrument is suitable only for d.c.?
  6. What instruments are more expensive and sensitive: moving coil or moving iron instruments?

V. State questions to the underlined words:

  1. Ammeters and voltmeters are made to operate on the same principle.
  2. Moving-iron instruments employ this effect. (General Question).
  3. Moving iron instrument consists of a coil, small piece of iron and a spindle (what … of).
  4. The repulsion type instrument has two pieces of iron. (…or…).
  5. A pointer moves over a graduated scale. (Question-tag).

VI. Insert the words:

  1. In the attraction type of the … (механізми) the bobbing is … (довгастий) instead of … (круглий).
  2. A small piece of … (залізо)  is mounted on the instrument … (вісь).
  3. … (Амортизація) is usually by means of an … (повітряний заспокоювач).
  4. The … (якір) never moves more than about a quarter of a … (повний оберт) in a miniature d.c. motor.
  5. (котушковий) movement is proportional to … (рух струму) and is opposed by the … (пружинний механізм).
  6. … (Стрілка) indicates the … (струм) flowing in … (ампер).
  7. The … (позитивний) terminal must be connected to the … (позитивний)  terminal of the … (живлення), or the … (механізм) tends to read … (навпаки).

VII. Topics for discussion:

  1. Moving iron instruments.
  2. Moving coil instruments.

 

UNIT 20

I. Read the text.

Electrical Measuring Instruments and Units

Any instrument which measures electrical values is called a meter. An ammeter measures the current in amperes. The abbreviation for the ampere is amp. A voltmeter measures the voltage and the potential difference in volts.

The current in a conductor is determined by two things – the voltage across the conductor and the resistance of the conductor. The unit by which resistance is measured is called the ohm. The resistance in practice is measured with the ohm-meter. A wattmeter measures electrical power in watts. Very delicate ammeters are often used for measuring very small currents. A meter whose scale is calibrated to read a thousandth of an ampere is called a micro ammeter or galvanometer.

Whenever an ammeter or voltmeter is connected to a circuit to measure electric current or potential difference, the ammeter must be connected in series and the voltmeter in parallel. To prevent a change in the electric current when making such an insertion, all ammeters must have a low resistance. Hence, most ammeters have a low resistance wire, called a shunt, connected across the armature coil.

A voltmeter, on the other hand, is connected across that part of the circuit for which a measurement of the potential difference is required. In order that the connection of the voltmeter to the circuit does not change tire electric current in the circuit, the voltmeter must have high resistance. If the armature coil does not have large resistance of its own, additional resistance is added in series.

The heating effect, electrostatic effect, magnetic and electromagnetic effects of electric current are used in order to produce the defleting torque. The resulting measuring instruments are called: (a) hot wire, (b) electrostatic, (c) moving iron, (d) moving coil, and (e) induction. Various types are used with both d.c. and a.c., but the permanent-magnet moving coil instrument are used only with d.c., and the induction type instruments are limited to a.c.

All, except the electrostatic type instruments, are current measuring devices, fundamentally ammeters. Consequently, most voltmeters are ammeters designed also to measure small values of current directly proportional to voltage to be measured.

II. Guess the meaning of international words:

1) instrument; 2) fact; 3) abbreviation; 4) voltmeter; 5) ohm; 6) ohm-meter; 7) wattmeter; 8) galvanometer; 9) shunt.

III. Give the Ukraian equivalents to the words below:

1) resistance; 2) to offer; 3) scale; 4) to prevent; 5) armature; 6) connection; 7) heating effect.

IV. Give the English equivalents to the words and word-combinations:

1) амперметр; 2) різниця потенціалів; 3) визначати; 4) чутливий; 5) градуювати; 6) вставка; 7) котушка; 8) зміннийструм (другий термін).

V. Answer the questions:

  1. How are electrical values measuring instruments called?
  2. How must the ammeter and the voltmeter be connected?
  3. What resistance must the ammeter and the voltmeter have?
  4. What resulting measuring instruments do you know?
  5. What types of instruments are used with both d.c. and a.c.?
  6. What instruments are used only with d.c. and limited to a.c.?

VI. Make up sentences corresponding to the contents of the text:

1. A meter

2. An ammeter

3. An ohmmeter

4. A voltmeter

5. A galvanometer

 

 

measures

 the resistance

very small currents

 electrical values

 the current

 the potential difference in volts

1. The voltage

2. The current

3. The resistance

 

is measured

in ohms

in volts

in amperes

VII. Describe different types of measuring instruments and units, using the table in Task V.

 

SUPPLEMENTARY TEXTS

Part I

HISTORY OF ELECTRICITY:

OUTSTANDING SCIENTISTS AND DISCOVERIES

TEXT 1

GEORGE SYMON OHM

GEORGE SYMON OHM (1784–1854) is a famous German physicist. In 1805 he entered the Erlangen University. Though he did not graduate from this University, he managed to write and defend a thesis in 1811. Later, he was a teacher at the gymnasiums of Gottstadt and Wamburg. Beginning from 1833 he became professor at the Polytechnical School in Nuremberg, and since 1849 – at the München University.

He is the most famous for establishment of the general law of the electric circuit, stating the relation between resistance, electromotive force, and strength of the current in the electric circuit. The law was discovered experimentally and first formulated in 1826. Further investigations made use of this law. The unit of resistance was named after Ohm at the International Congress of Electricians in1881.

TEXT 2

Ohm's Law

One of Ohm's major contributions was the establishment of a definite relationship between voltage, resistance, and current in a closed circuit. A circuit consists of a voltage source and a complete path for current. Ohm stated this relationship as follows:

Current is directly proportional to voltage and inversely proportional to resistance.

As a formula, it appeals like this:

This formula is commonly known as Ohm's Law.

About 1817 Ohm discovered that a simple correlation exists between resistance, current and voltage. That is: the current that flows in the circuit is directly proportional to the voltage and inversely proportional to the resistance. A current is measured in amperes, a voltage, or potential difference is measured in volts. A resistance is measured in ohms.

TEXT 3

Faraday's Law

MICHEL FARADAY was a great British physicist, the founder of the theory of electron field, a member of the London Royal Society. He was born in London in the family of a smith. Spending a few years in the primary school, he continued his studies all by himself, reading books and listening public lectures. Greatly impressed by lectures of a well-known English chemist H. Davy, he sent him a letter asking for a job at the Royal Institute. In 1813 Davy gave him a job of a laboratory assistant. Thanks to the brilliant talent of an experimenter, Faraday soon made himself known. All his future scientific work was carried out in the Royal Institute laboratories.

Faraday's law is formulated as follows: (a) the induced E.M.F. in a conductor is proportional to the rate at which the conductor cuts the magnetic lines of force. (b) The induced E.M.F. in a circuit is proportional to the rate of change of the number of lines of force threading the circuit.

TEXT 4

EMIL LENZ. Lenz's Law

EMIL LENZ was born on the 12 of February 1804 and died on the 29 of January 1865 in Derpt. He became a prominent Russian physicist, an Academician.

At the age of 16 he entered the Derpt University. In 1823, when being a student, he joined a 3 year round-the-world trip on board of the ship “Enterprise” as a physicist. The chief of the expedition was Kotzebu, a famous Russian seaman and explorer. In 1828 Lenz was elected adjunct-professor of the St.Petersburg Academy of Sciences for his outstanding investigations in geophysics.

In the 30 s of the 19th century, Lenz reorganized a physical laboratory of the Academy of Sciences where he began his famous studies on electricity and magnetism. He discovered the law of the electric current emitting heat in conductors. This law laid the foundation for the discovery of the Law of conservation and conversion of energy.

The direction of the induced current is such that its effect opposes the change producing it. The right-hand rule enables one to predict the direction of the induced current, and may be shown to conform with Lenz's law.

The induction coil, the dynamo, the transformer, and the telephone are practical application of electromagnetic induction.

TEXT 5

Kirchhoff's Laws

GUSTAV ROBERT KIRCHHOFF (1824–1887) is a famous German scientist. He graduated from the Königsberg University in 1846. Since 1850 he had been an extraordinary professor of physics at the University of Breslau, and since 1854 – an ordinary professor of experimental and theoretical physics in Heidelberg University, in 1875 he became the chief of the Chair of mathematical physics in Berlin University.

His first works (1845–49) were dedicated to studies of the electric current in various kinds of conductors, series and parallel circuits, and to distribution of electricity in the conductors. Together with Bunsen, he was the author of spectral analysis.

G. R. Kirchhoff expanded and clarified Ohm's law with two statements which may be paraphrased as follows:

1. The current entering a point is equivalent to the current leaving the point.

2. The sum of the voltage drops around a closed loop is equal to the applied voltage.

Kirchhoff intended his statements to apply to all circuits.

The two main principles of circuit analysis are:

(1) Kirchhoff's Current Law. The sum of the currents directed away from the junction is equal to the sum of the currents directed toward the junction.

(2) Kirchhoff's E. M. F. Law. The sum of the voltage drops around any closed loop of a network equals the sum of the voltage rises around this loop.

TEXT 6

A Great Invention of a Russian Scientist

Radio occupies one of the leading places among the greatest achievements of modern engineering. It was invented by Professor A. S. Popov, a talented Russian scientist, who demonstrated the first radio- receiving set in the world on May 7, 1895.

And it is on this day that the anniversary of the birth of the radio is marked.

By his invention Popov made a priceless contribution to the development of world science.

A. S. Popov was born in the Urals, on March 16, 1859. For some years he had been studying at the seminary in Perm, and then went to the University of St. Petersburg. In his student days he worked as a mechanic at one of the first electric power – plants in St. Petersburg which was producing electric lights for Nevsky Prospekt.

After graduating from the University in 1882, A. S. Popov remained there as a post-graduate at the Physics Department. A year later he became a lecturer in Physics and Electrical Engineering in Kronstadt. By this time he had already gained recognition among specialists as an authority in this field.

After Hertz had published his experiments proving the existence of electromagnetic waves, A. S. Popov thought of the possibility of using Hertz waves for transmitting signals over a distance. Thus the first wireless (radio) receiving set was created. Then Popov developed his device and on March 24, 1896 he demonstrated the transmission and reception of a radiogram consisting of two words: Heinrich Hertz. On that day the radio-telegraphy was converted from an abstract theoretical problem into a real fact.

A. S. Popov did not live to see the great progress of his invention. In the first decrees the Soviet Government planned the development of an industry for producing radio equipment, the construction of radio stations. All this was put into practice on a scale which had greatly surpassed plans for the radiofication of the country.

Popov’s invention laid the foundation for further inventions and improvements in the field of radio engineering. Since that time scientists all over the world have been developing the modern systems of radiotelegraphy, broadcasting, television, radiolocation, radio-navigation and other branches of radio-electronics.

 

 

TEXT 7

CHARLES COULOMB

CHARLES COULOMB (1736–1806), a member of the Paris Academy of Sciences, an outstanding French physicist in the period from 1785 to 1789 stated the law of electrostatic and magnetic interaction. His work in this field laid foundation for the future theoretic investigations in the electrostatics and magnetstatics.

Coulomb’s law is one of the principal laws of electrostatics. It established a relationship between the force of interaction of two static electric charges, their quantities, and the distance between them. According to Coulomb’s law the absolute value of the force of repulsion of two like charges or the force of attraction between two unlike charges el and e2, which size is much less than the distance between them, is inversely proportional to the square of the distance between them. He also stated the laws of rotation, dry friction, laws of interaction between magnetic poles. All these laws were named in honor of Ch. Coulomb.

TEXT 8

ANDRE MARIE AMPERE

ANDRE MARIE AMPERE (1775–1836) was an outstanding physicist and mathematician of French origin. He is one of the founders of modern electrodynamics. He was born in aristocratic family in Lyon. By the age of 14 he has read all the 20 volumes of “The Encyclopedia” by Diderot and D’Alambert. His scientific interests were very diverse.

In 1801 Ampere headed the Chair of Physics in Burge, in 1805 he became a teacher of physics at the Polytechnical School in Paris. Since 1814 he was elected Member of The Institute, which later transformed into the French Academy of Sciences. After 1824 he occupied the post of professor at the Ecole Normale in Paris.

Ampere’s studies on the effects of the electric current flow on the magnetic needle were his greatest contribution to physics. In 1820 in the report to the Paris Academy, he made the announcement of the so-called “Ampere Rule”, which is since used to define the deflection of the needle affected by the electric current. This led him to the discovery of interactions between electric currents. The fundamental laws of this interaction got his name.

TEXT 9

JAMES CLERC MAXWELL

JAMES CLERC MAXWELL, a British physicist, was born in 1831. In 1847–50, he studied at the Edinborough University and later in Cambridge. On graduating from the Cambridge University, he was offered a post of a teacher there. In 1860 he headed the Chair of Physics in the King’s College in London. In 1871 he went back to Cambridge where he headed a newly-organized laboratory named in honor of H. Cavendish.

His scientific interests lay in the field of electro-magnetism, molecular physics, optics, mechanics, and other. Maxwell published his first scientific paper when he was only 15. He founded the theory of electro-magnetic field, the electromagnetic theory of light. He is credited with the studies of the Saturnus rings. He described all known facts of electrodynamics by means of system of equations, known as Maxwell’s equations of electrodynamics.

TEXT 10

World Brightest Electric Lamps

The world’s brightest lamp, able to light an area of 250 acres was produced by the Moscow Electric Lamp Works not long ago. It was designed by Victor Vasiliyev.

The lamp, which is named after the bright star Sirius is a three – phase 200 – kilowatt discharge lamp. The working part of the lamp is a double walled quartz tube which is 10 inches in diameter and about 40 inches long. The lamp is started by a special high voltage flash and cooled by water circulating between the inner and outer tubes.

One of these lamps is now installed nearly 200 feet above ground level in the engineering pavilion of the Industrial Exhibition Moscow. The Sirius lamp can be particularly useful on big construction sites.

TEXT 11

EARLY HISTORY OF ELECTRICITY

History shows us that at least 2,500 years ago the Greeks were already familiar with the strange force (as it seemed to them) which is known today as electricity. Generally speaking, three phenomena made up all of man's knowledge of electrical effects. The first phenomenon was the familiar lightning flash – a dangerous power which could both kill people and burn or destroy their houses. The second manifestation of electricity was more or less familiar to people: a strange yellow stone which looked like glass was sometimes found in the earth. On being rubbed, that strange yellow stone – amber – obtained the ability of attracting light objects of a small size. The third phenomenon was connected with the so-called electric fish which possessed the property of giving more or less strong electric shocks which could be obtained by a person coming into contact with it.

Nobody knew that the above phenomena were due to electricity. People could neither understand their observations nor find any practical applications for them. All of man's knowledge in the field of electricity has been obtained during the last 370 years. It took a long time before scientists learned how to make use of electricity. Most of the electrically operated devices, such as the electric lamp, the refrigerator, the tram, the lift, the radio are less than one hundred years old. In spite of their having been employed for such a short period of time, they play a most important part in man's everyday life all over the world.

Famous names are connected with the scientific research on electricity, its history. As early as about 600 B. C. the Greek philosopher Phales discovered that when amber was rubbed, it attracted and held minute light objects. However, he could not know that amber was charged with electricity owing to the process of rubbing. Then Gilbert, the English physicist, began the first systematic scientific research on electrical phenomena. He discovered that various substances possessed the property similar to that of amber: they generated electricity when they were rubbed. He gave the name "electricity" to the phenomenon he was studying. He got this word from the Greek "electrum" meaning "amber".

Many learned men of Europe began to use the new word "electricity" in their conversation as they were enga­ged in research of their own. Scientists of Russia, France and Italy made their contribution as well as the Englishmen and the Germans.

TEXT 12

FROM THE HISTORY OF ELECTRICITY

There are two types of electricity, namely, electricity at rest or in a static condition and electricity in motion, that is, the electric current. Both of them are made up of electric charges, static charges being at rest, while electric current flows and does work. Thus, they differ in their ability to serve mankind as well as in their behaviour.

Static electricity was the only electrical phenomenon to be observed by man for a long time. At least 2,500 years ago the Greeks knew how to get electricity by rubbing substances. However, the electricity to be obtained by rubbing objects cannot be used to light lamps, to boil water, to run electric trains, and so on. It is usually very high in voltage and difficult to control, besides it discharges in no time.

As early as 1753, Franklin made an important contribution to the science of electricity. He was the first to prove that unlike charges are produced due to rubbing dissimilar objects. To show that the charges are unlike and opposite, he decided to call the charge on the rubber-negative and that on the glass-positive.

In this connection one might remember the Russian academician V. V. Petrov. He was the first to carry on experiments and observations on the electrification of metals by rubbing them one against another. As a result he was the first scientist in the world who solved that problem.

Volta’s discovery of electric current developed out of Galvani's experiments with the frog. Galvani observed that the legs of a dead frog jumped as a result of an electric charge. He tried his experiment several times and every time he obtained the same result. He thought that electricity was generated within the leg itself.

Volta began to carry on similar experiments and soon found that the electric source was not within the frog's leg but was the result of the contact of both dissimilar metals used during his observations. However, to carry on such-experiments was not an easy thing to do. He spent the next few years trying to invent a source of continuous current. To increase the effect obtained with one pair of metals, Volta increased the number of these pairs. Thus the voltaic pile consisted of a copper layer and a layer of zinc placed one above another with a layer of flannel moistened in salt water between them. A wire was connected to the first disc of copper and to the last disc of zinc.

The year 1800 is a date to be remembered: for the first time in the world's history a continuous current was generated.

Volta was born in Como, Italy, on February 18, 1745. For some years he was a teacher of physics in his home town. Later on he became professor of natural sciences at the University of Pavia. After his famous discovery he traveled in many countries, among them France, Germany and England. He was invited to Paris to deliver lectures on the newly discovered chemical source of continuous current. In 1819 he returned to Como where he spent the rest of his life. Volta died at the age of 82.

Text 13

Nature of Electricity

The first recorded observation on electricity was made by the ancient Greek philosopher Phales. He stated that a piece of amber rubbed with fur attracted light objects. But more than 22 centuries passed before the study of magnetism and of electrical phenomena began by Galileo and other scientists.

It was well known that not only amber, but many other substances having been rubbed behave like amber i.e. can be electrified. It was discovered that any 2 dissimilar substances forced into contact and then separated became electrified, or acquired electrical charges.

During the 19th century the idea of the nature of electricity was completely revolutionized. The atom was regarded as the ultimate subdivision of matter. Today the atom is regarded as an electrical system. In this electrical system there is a nucleus containing positively charged particles called protons. The nucleus is surrounded by lighter negatively charged units – electrons. So the most essential constituent of matter is made up of electrically charged particles. Matter is neutral and produces no electrical effects when it has equal amounts of both charges.

But when the number of negative charge is unlike the number of positive ones, matter will produce electrical effects. Having lost some of its electrons, the atom has a positive charge: having an excess of electrons – it has a negative charge.

TEXT 14

ATMOSPHERIC ELECTRICITY

Electricity plays such an important part in modern life that in order to get it, men have been burning millions of tons of coal. Coal is burned instead of its being mainly used as a source of valuable chemical substances which it contains. Therefore, finding new sources of electric energy is a most important problem that scientists and engineers try to solve.

Hundreds of millions of volts are required for a lightning spark about one and a half kilometre long. However, this does not represent very much energy because of the intervals between single thunderstorms. As for the power spent in producing lightning flashes all over the world, it is only about 1/10,000 of the power got by man­kind from the sun, both in the form of light and that of heat. Thus, the source in question may interest only the scientists of the future.

Atmospheric electricity is the earliest manifestation of electricity known to man. However, nobody understood that phenomenon and its properties until Benjamin Franklin made his kite experiment. On studying the Leyden jar (for long years the only known condenser), Franklin began thinking that lightning was a strong spark of electricity. He began experimenting in order to draw electricity from the clouds to the earth. The story about his famous kite is known all over the world.

On a stormy day Franklin and his son went into the country taking with them some necessary things such as: a kite with a long string, a, key and so on. The key was connected to the lower end of the string. "If lightning is the same as electricity," Franklin thought, "then some of its sparks must come down the kite string to the key." Soon the kite was flying high among the clouds where lightning flashed. However, the kite having been raised, some time passed before there was any proof of its being electrified. Then the rain fell and wetted the string. The wet string conducted the electricity from the clouds down the string to the key. Franklin and his son both saw electric sparks which grew bigger and stronger. Thus, it was proved that lightning is a discharge of electricity like that got from the batteries of Leyden jars.

Trying to develop a method of protecting buildings during thunderstorms, Franklin continued studying that problem and invented the lightning conductor. He wrote necessary instructions for the installation of his invention, the principle of his lightning conductor being in use until now. Thus, protecting buildings from strokes of lightning was the first discovery in the field of electricity employed for the good of mankind.

TEXT 15

MAGNETISM

In studying the electric current, the following relation between magnetism and the electric current can be observed; on the one hand magnetism is produced by the current and on the other hand the current is produced from magnetism.

Magnetism is mentioned in the oldest writings of man. Romans, for example, knew that an object looking like a small dark stone had the property of attracting iron. However, nobody knew who discovered magnetism or where and when the discovery was made. Of course, people could not help repeating the stories that they had heard from their fathers who, in their turn, heard them from their own fathers and so on.

One story tells us of a man called Magnus whose iron staff was pulled to a stone and held there. He had great difficulty in pulling his staff away. Magnus carried the stone away with him in order to demonstrate its attracting ability among his friends. This unfamiliar substance was called Magnus after its discoverer, this name having come down to us as "Magnet".

According to another story, a great mountain by the sea possessed so much magnetism that all passing ships were destroyed because all their iron parts fell out. They were pulled out because of the magnetic force of that mountain.

The earliest practical application of magnetism was connected with the use of a simple compass consisting of one small magnet pointing north and south.

A great step forward in the scientific study of magnetism was made by Gilbert, the well-known English physicist (1540–1603). He carried out various important experiments on electricity and magnetism and wrote a book where he put together all that was known about magnetism. He proved that the earth itself was a great magnet.

Reference must be made here to Galileo, the famous Italian astronomer, physicist and mathematician. He took great interest in Gilbert's achievements and also studied the properties of magnetic materials. He experimented with them trying to increase their attracting power.

At present, even a schoolboy is quite familiar with the fact that in magnetic materials, such as iron and steel, the molecules themselves are minute magnets, each of them having a north pole and a south pole.

 

TEXT 16

MAGNETIC EFFECT OF AN ELECTRIC CURRENT

The invention of the voltaic cell in 1800 gave electrical experimenters a source of a constant flow of current. Seven years later the Danish scientist and experimenter Oersted, decided to establish the relation between a flow of current and a magnetic needle. It took him at least 13 years more to find out that a compass needle is deflected when brought near a wire through which the electric current flows. At last, during a lecture he adjusted, by chance, the wire parallel to the needle. Then, both he and his class saw that when the current was turned on, the needle deflected almost at right angles towards the conductor. As soon as the direction of the current was reversed, the direction the needle pointed in was reversed too.

Oersted also pointed out that provided the wire were adjusted below the needle, the deflection was reversed.

The above-mentioned phenomenon highly interested Ampere who repeated the experiment and added a number of valuable observations and statements. He began his research under the influence of Oersted's discovery and carried it on throughout the rest of his life.

Everyone knows Ampere's rule thanks to which the direction of the magnetic effect of the current can always be found. Ampere established and proved that magnetic effects could be produced without any magnets by means of electricity alone. He turned his attention to the behaviour of the electric current in a single straight conductor and in a conductor that is formed into a coil, i.e. a solenoid.

When a wire conducting a current is formed into a coil of several turns, the amount of magnetism is greatly increased.

It is not difficult to understand that the greater the number of turns of wire, the greater is the m.m.f. (that is the magnetomotive force) produced within the coil by any constant amount of current flowing through it. In addition, when doubling the current, we double the magnetism generated in the coil.

A solenoid has two poles which attract and repel the poles of other magnets. While suspended, it takes up a north and a south direction exactly like the compass needle. A core of iron becomes strongly magnetized if placed within the solenoid while the current is flowing.

 

Part II

INTERESTING FACTS ON ELECTRICITY AND ELECTRONICS

TEXT 1

ELECTRICITY MAY BE DANGEROUS

Many people have had strong shocks from the electric wires in a house. The wires seldom carry current at a higher voltage than 220, and a person who touches a bare wire or terminal may suffer no harm if the skin is dry. But if the hand is wet, he may be killed. Water is known to be a good conductor of electricity and provides an easy path for the current from the wire to the body. One of the main wires carrying the current is connected to earth, and if a person touches the other one with a wet hand, a heavy current will flow through his body to earth and so to the others. The body forms part of an electric circuit.

When dealing with wires and fuses carrying an electric current, it is best to wear rubber gloves. Rubber is a good insulator and will not let the current pass to the skin. If no rubber gloves can be found in the house, dry cloth gloves are better than nothing. Never touch a bare wire with the wet hand, and never, in any situation, touch a water pipe and an electric wire at the same time.

People use electricity in their homes every day but sometimes forget that it is a form of power and may be dangerous. At the other end of the wire there are great generators driven by turbines turning at high speed. One should remember that the power they generate is enormous. It can burn and kill, but it will serve well if it is used wisely.

TEXT 2

POWER TRANSMISSION

They say that about a hundred years ago, power was never carried far away from its source. Later on, the range of transmission was expanded to a few miles. And now, in a comparatively short period of time, electrical engineering has achieved so much that it is quite possible, at will, to convert mechanical energy into electrical energy and transmit the latter over hundreds of kilometres and more in any direction required. Then in a suitable locality the electric energy can be reconverted into mechanical energy whenever it is desirable. It is not difficult to understand that the above process has been made possible owing to generators, transformers and motors as well as to other necessary electrical equipment. In this connection one cannot but mention the growth of electric power generation in this country. The longest transmission line in pre-revolutionary Russia was that connecting the Klasson power-station with Moscow. It is said to have been 70 km long, while the present Volgograd–Moscow high-tension transmission line is over 1000 kilometres long. (The reader is asked to note that the English terms "high-tension" and "high-voltage" are interchangeable.)

It goes without saying that as soon as the electric energy is produced at the power-station, it is to be transmitted over wires to the substation and then to the consumer. However, the longer the wire, the greater is its resistance to current flow. On the other hand, the higher the offered resistance, the greater are the heating losses in electric wires. One can reduce these undesirable losses in two ways, namely, one can reduce either the resistance or the current. It is easy for us to see how we can reduce resistance: it is necessary to make use of a better conducting material and as thick wires as possible. However, such wires are calculated to require too much material and, hence, they will be too expensive. Can the current be reduced? Yes, it is quite possible to reduce the current in the transmission system by employing transformers. In effect, the waste of useful energy has been greatly decreased due to high-voltage lines. It is well known that high voltage means low current, low current in its turn results in reduced heating losses in electrical wires. It is dangerous, however, to use power at very high voltages for anything but transmission and distribution. For that reason, the voltage is always reduced again before the power is made use of.

TEXT 3

HYDROELECTRIC POWER-STATION

Water power was used to drive machinery long before Polzunov and James Watt harnessed steam to meet man's needs for useful power.

Modern hydroelectric power-stations use water power to turn the machines which generate electricity. The water power may be obtained from small dams in rivers or from enormous sources of water power like those to be found in Russia. However, most of our electricity, that is about 86 per cent, still comes from steam power-stations.

In some other countries, such as Norway, Sweden, and Switzerland, more electric energy is produced from water power than from steam. They have been developing large hydroelectric power-stations for the past forty years, or so, because they lack a sufficient fuel supply. The tendency, nowadays, even for countries that have large coal resources is to utilize their water power in order to conserve their resources of coal. As a matter of fact, almost one half of the total electric supply of the world comes from water power.

The locality of a hydroelectric power plant depends on natural conditions. The hydroelectric power plant may be located either at the dam or at a considerable distance below. That depends on the desirability of using the head supply at the dam itself or the desirability of getting a greater head. In the latter case, water is conducted through pipes or open channels to a point farther downstream where the natural conditions make a greater head possible.

The design of machines for using water power greatly depends on the nature of the available water supply. In some cases great quantities of water can be taken from a large river with only a few feet head. In other cases, instead of a few feet, we may have a head of several thousands of feet. In general, power may be developed from water by action of its pressure, of its velocity, or by a combination of both.

A hydraulic turbine and a generator are the main equipment in a hydroelectric power-station. Hydraulic turbines are the key machines converting the energy of flowing water into mechanical energy. Such turbines have the fol­lowing principal parts: a runner composed of radial blades mounted on a rotating shaft and a steel casing which houses the runner. There are two types of water turbines, namely, the reaction turbine and the impulse turbine. The reaction turbine is the one for low heads and a small flow. Modified forms of the above turbine are used for medium heads up to 500–600 ft, the shaft being horizontal for the larger heads. High heads, above 500 ft, employ the impulse type turbine.

Hydropower engineering is developing mainly by constructing high capacity stations integrated into river systems known as cascades. Such cascades are already in operation on the Dnieper, the Volga and the Angara.

TEXT 4

NUCLEAR POWER PLANT

The heart of the nuclear power plant is the reactor which contains the nuclear fuel. The fuel usually consists of hundreds of uranium pellets placed in long thin cartridges of stainless steel. The whole fuel cell consists of hundreds of these cartridges. The fuel is situated in a reactor vessel filled with a fluid. The fuel heats the fluid and the super-hot fluid goes to a heat exchanger i.e. steam generator, where the hot fluid converts water to steam in the heat exchanger. The fluid is highly radioactive, but it should never come into contact with the water that is converted into steam. Then this steam operates steam turbines in exactly the same way as in the coal or oil fired power-plant.

A nuclear reactor has several advantages over power-plants that use coal or natural gas. The latter produce considerable air pollution, releasing combusted gases into atmosphere, whereas a nuclear power plant gives off almost no air pollutants. As to nuclear fuel, it is far cleaner than any other fuel for operating a heat engine. Furthermore, our reserves of coal, oil and gas are decreasing so nuclear fuel is to replace them.

TEXT 5

Electronics and Technical Progress

Large – scale application of electronic techniques is a trend of technical progress capable of revolutionizing many branches of industry.

Electronics as a science studies the properties of electrons, the laws of their motion, the laws of the transformation of various kinds of energy through the media of electrons.

At present it is difficult to enumerate all branches of science and technology which are based on electronic technique.

Electronics make it possible to raise industrial automation to a higher level, to prepare conditions for the future technical retooling of the national economy. It is expected to revolutionize the system of control over mechanisms and production processes. Electronics greatly helps to conduct fundamental research in nuclear physics, in the study of the nature of matter, and in realization of controlled thermonuclear reactions.

An ever greater role is being played by electronics in the development of the chemical industry.

Electronics embrace many independent branches. The main among them are vacuum, semiconductor, molecular and quantum electronics.

TEXT 6

Protection and control equipment

In electrical systems for the generation, distribution and use of electrical energy, considerable control equipment is necessary. It can be divided into two classes:

a) equipment used at the generating and distributing end;

b) equipment used at the receiving end of the system.

c) secondary emission, in which electrons are driven from a material by the impact of electrons or other particles on its surface.

d) field emission, in which electrons are drawn from the surface of a metal by the application of very powerful electric fields.

TEXT 7

The Nucleus

The nucleus is composed of protons, neutrons, and other subatomic particles. The proton is a relatively heavy positive particle. It has exactly the same quantity of electrical charge as the electron although its sign (or value) is opposite. The proton weighs the same as approximately 1845 electrons, and the atom contains a like number of protons and electrons. The neutron is so named because it is electrically neutral, that is, it is neither positive nor negative. The neutron adds weight to the atom and tends to prevent movement of the protons.

When the parts of the atom are examined, there can be found minute particles with positive and negative electrical charges. The basic difference between lead and gold lies in the number of electrons and protons in the atoms which compose these materials (metals).

The simplest atom consists of a nucleus which contains one proton, which is orbited by a single electron. This is the hydrogen atom. One of the more complex atoms is californium. This atom contains 98 photons and 98 electrons with the electrons orbiting the nucleus in seven different and distinct energy shells.

TEXT 8

What Is An Electron?

What is an electron? It is a very small, indivisible, fundamental particle – a major constituent of all matter. All electrons appear to be identical and to have properties that do not change with time.

Two essential characteristics of the electron are its mass and its charge. Qualitatively, an electron is a piece of matter that has weight and is affected by gravity. Just as the mass of any object is defined, the mass of the electron can be defined by applying a force and measuring the resulting rate of change in the velocity of the electron, that is, the rapidity with which its velocity changes. This rate of change is called acceleration, and the electron mass is then defined as the ratio of the applied force to the resulting acceleration. The mass of the electron is found to be about 9.11 10-28 grams. Not only the electron but all matter appears to have positive mass, which is equivalent to saying that a force applied to any object results in acceleration in the same direction as the force.

How does the other aspect, the charge of the electron, arise? All electrons have an electric charge, and the amount of charge, like the mass, is identical for all electrons. No one has ever succeeded in isolating an amount of charge smaller than that of the electron. The sign of the charge of the electron is conventionally defined as negative; the electron thus represents the fundamental unit of a negative charge.

TEXT 9

Electrons and electronic charges

An atom of ordinary hydrogen is composed of one positively charged proton as a nucleus and one negatively charged electron. The proton is about 1,840 times more massive than the electron. Heavier atoms are built up of protons, neutrons, and electrons. When a body is negatively charged, it has excess electrons; if positively charged, there is a deficiency of electrons.

In metallic conductors many of the electrons are free to travel about among the atoms like molecules of a gas.

When electric charges are static, they do not progress in any definite direction. Excess electrostatic charges reside on the outer surface of a conductor, and their density is greatest in regions of greatest curvature.

TEXT 10

Polarity

All matter is basically composed of two types of electricity: positive particles and negative particles. The negative particles are relatively light in weight and in constant motion. These orbiting particles exhibit equal and opposite electrical characteristics to the heavier particles within the nucleus.

When an atom has the same number of electrons as it has protons, it exalts no outward electrical properties. This is because the positive and negative charges are exactly balanced. Such an atom is electrically stable and is said to be neutral.

When an atom takes on an excess of electrons, it exhibits outward characteristics similar to the electron. It takes an overall negative property. This condition is called a negative change, and such changed atom is not electrically stable. A charged atom is called an ion, and if the charge is negative, it is called a negative ion.

An atom which has less than its normal quota of electrons, displays a positive polarity similar to that of the proton due to the fact that it has more positive protons than it has negative electrons. This type of atom is said to assume a positive electrical charge. Such an atom is known as a positive ion while it is in this electrically unstable condition.

These charges of atoms are the simplest examples of static electricity. We stated that atoms are influenced to accept or give up electrons.

As the name dynamic electricity indicates, this is electricity in motion. The heart of the matter is electron movement.

In electrical system, electrical pressure is needed. To maintain this pressure, a device that will move electrons in a way similar to that in which the pump moves water is necessary. The most familiar is the storage battery.

TEXT 11

Energy Conversion

Since energy can neither be created nor destroyed, any process of producing voltage must be a conversion from one form of energy to another. There are several names for the machines that convert mechanical energy into electrical energy. The dynamo is the source of huge amounts of power; the magneto supplies minute power outputs; and in between there are alternators and generators. All of these work at the same principle, the principle demonstrated by Faraday when he discovered that relative motion between a magnetic field and a conductor in that field would induce a current in the conductor. It makes no real difference whether the conductor is stationary and the field moving or the field is stationary and the conductor moving. The important factor is the relative motion in a manner that will cause flux to cut across the conductor.

 

Electrical engineering dictionary

A

Absolute error - абсолютна погрішність
Absolute sensitivity - абсолютна чутливість
Acceleration - прискорення
Acceleration of distance protection  прискорення дистанційного захисту
Accumulator - акумулятор
Accumulator discharge - розряд акумулятора
Accuracy - точність
Accuracy class - клас точності
Active energy - активна енергія
Active power relay - реле активної потужності
Addressing - адресація
Adjacent coil - суміжна котушка
Adjusting - налаштування
Adjustment  налаштування

Adjustment range - межі регулювання
Admissible interrupting current - допустимий розривний струм
Admittance - повна провідність
Advance angle - кут випередження
Adding connection - згідне включення
Air  blast (circuit) breaker - повітряний вимикач
Air - blast switch - повітряний вимикач
Air gap - повітряний проміжок
Airtight - герметичний
Air transformer - сухий трансформатор
Alarm - сигнал
Alarm lamp - сигнальна лампа
Alarm relay - сигнальне реле
Alarm signal - аварійний сигнал
Algorithm - алгоритм
Alignment - юстирування
Alive - під напругою

Alkaline storage battery - лужний акумулятор
All - or - nothing relay - реле двопозиційне, реле логічне
Allowable voltage - допустима напруга
All - pass(universal) filter - універсальний фільтр
Alternating component - змінна складова
Alternating current - змінний струм
Alternating current amplifier - підсилювач змінного струму
Alternating current circuit - ланцюг змінного струму
Alternating - current measurement - вимір на змінному струмі
Alternating current relay - реле змінного струму
Alternating current system / а.c system  електрична мережа змінного струму
Alternating voltage - змінна напруга
Alternator - синхронний генератор змінного струму
Ampere density - щільність струму
Ampere - turns - ампер-витки
Ampere - windings - ампер-витки
Amplifier – підсилювач

Amplitude(of a symmetrical alternating quantity)  амплітуда періодичної величини
Amplitude modulation - амплітудна модуляція
Amplitude - frequency characteristic - амплітудно-частотна характеристика
Analogue - аналоговий
Analogue - digital converter - аналого-цифровий перетворювач
Analogue transducer - аналоговий перетворювач
Analogue relay - аналогове реле
Anti - hunting transformer - стабілізуючий трансформатор
Anti - pumping - блокування від стрибків
Anti - resonant circuit  паралельний (резонансний,коливальний) контур
Anti - torque - протидіючий момент, що обертає
Apparent impedance seen by distance relay - опір на затисках реле

Apparent power - повна потужність
Applied (impressed) voltage - прикладена напруга
Arc - електрична дуга
Arc extinction - гасіння дуги
Arcing earth - дугове замикання на землю
Arcing time - час горіння дуги
Arc resistance - опір дуги
Arc - striking - виникнення дуги
Arc suppression coil - дугогасна котушка
Arc voltage - напруга на дузі
Arc voltage drop - напруга на дузі
Armoured cable - броньований кабель
Artificial mains / network - модель мережі
Assembler  складальний пристрій
Astatic regulator - астатичний регулятор
Asynchronism - асинхронний режим
Asynchronous - асинхронний
Asynchronous generator - асинхронний генератор
Atmospherics - асинхронний режим(хід)
Atmospheric overvoltage - атмосферні завади, атмосферні перенапруження
Attachment - приставка
Attended substation - підстанція з оперативним персоналом
Attenuation(of a signal) - загасання(сигналу)
Attenuation band - смуга загасання
Attenuation characteristic - характеристика загасання
Attenuation due to ice - formation - загасання із-за ожеледі
Attenuation factor - коефіцієнт загасання
Attenuation ratio - логарифмічний декремент загасання
Attracted armature relays - реле з якорем, що притягується
Audio - frequency oscillator - генератор звукової частоти
Audio oscillator - звуковий генератор
Automatic control - автоматичне управління
Automatic excitation control - автоматичне регулювання збудження (АРЗ)
Automatic control equipment - автоматичний пристрій
Automatic field damper(killer, suppressor) - автомат гасіння поля (АГП)
Automatic frequency control - автоматичне регулювання частоти (АРЧ)
Automatic load - frequency control  автоматичне регулювання частоти і активної потужності (АРЧП)
Automatic load - shedding control equipment -автоматичний пристрій по обмеженню потужності
Automatic load transfer - автоматичне включення резерву(АВР)
Automatic loss - of - synchronism control equipment –автоматичний пристрій захисту від втрати синхронізму
Automatic loss - of - voltage tripping equipment - пристрій автоматичного відключення при втраті напруги

Automatic program control - автоматичне програмне управління
Automatic reclosing - автоматичне повторне включення (АПВ)
Automatic reclosing control equipment  автоматичний пристрій  повторного включення
Automatic regulation - автоматичне регулювання
Automatic remote tripping - автоматичне телевідключення
Automatic reset - автоматичне повернення
Automatic sequence control - автоматичне програмне управління
Automatic switch(low voltage)  автоматичний вимикач (низька напруга)
Automatic switching control equipment  автоматичний пристрій управління
Automatic synchronous coupler  автоматичний синхронізатор
Automatic reserve source - автоматичне включення резерву(АВР)
Automatic transfer switch - облаштування АВР (низька напруга)

Automatic voltage control - автоматичне регулювання напруги (АРН)
Automatic voltage regulator - автоматичний регулятор напруги
Automation - автоматизація
Autotransformer - автотрансформатор
Auxiliaries(unit, station) transformer  трансформатор власних потреб(енергоблока, станційний)
Auxiliary circuit - допоміжний ланцюг
Auxiliary generator - генератор власних потреб
Auxiliary instrument transformer  допоміжний вимірювальний трансформатор
Auxiliary relay - реле проміжне
Auxiliary services supply - джерело оперативного струму
Auxiliary supplies - власні потреби
Auxiliary transformer of a unit(of a power station) -трансформатор власних потреб блоку(електростанції)
Availability - готовність
Availability factor - коефіцієнт готовності
Availability rate - норма готовності
Available capacity - готова потужність
Available power - наявна потужність

B

Back ampere - turns - протидіючі витки
Back current - протитечія
Back electromotive force - протидіюча ЕРС
Back up protection - резервний захист(РЗ)
Bad contact - поганий контакт
Balance relay - балансне реле
Balancing battery - буферна батарея
Balancing network - симетрувальна схема
Band - діапазон
Band of regulation - зона регулювання
Band - pass filter - смуговий фільтр діапазонів
Band - rejection - фільтр, що загороджує
Band switch - перемикач
Band width - ширина смуги
Bank of accumulators - акумуляторна батарея
Bank of capacitors - батарея конденсаторів
Bay - чарунка
Bay(of a substation) - чарунка електричної підстанції
Beat - биття
Beat frequency - частота биття
Bias current - струм зміщення 
Biased differential relay - диференціальне реле зміщення
Biased relay - реле з гальмуванням
Bias electrical restraint - електричне гальмування
Bias voltage - напруга зміщення
Bidirectional pulses - біполярні імпульси
Bifilar winding - біфілярна обмотка

Bimetallic plate - біметалева пластина
Bipolar - двополюсний
Block - блок
Block - diagram - блок-схема
Blocking circuit breaker closing - блокування ланцюга включення вимикача
Blocking diode - блокуючий діод
Blocking overreach distance protection system - система дистанційного захисту з розширеною зоною і блокуючим сигналом
Blocking protection system - система захисту з блокуючимсигналом
Blocking relay - блокуюче реле
Blocking signal - блокуючий сигнал
Blowing  перегорання

Blowout coil - іскрогасна котушка
Bobbin - котушка
Booster, Booster transformer  вольтододатковий трансформатор
Branch box - розподільна коробка
Branch line(spur) - відгалуження від електричної лінії
Brake magnet - гальмівний магніт
Break - розмикання
Вrеаk - before - make contact - перемикальний контакт з попереднім замиканням ланцюга
Breakdown current - струм пробою; розрядний струм
Breaking capacity - потужність, що відключається (розривна)
Bridge  міст

Bridge balance - урівноважений міст
Bridge rectifier - мостовий випрямляч
Bridging - шунтований
Bucking - посадка напруги
Buffer storage - проміжний накопичувач
Bundle conductors - розщеплені дроти
Burn - out - перегорання
Busbars - збірні шини
Busbar section - секція системи шин
Busbar section disconnector - секціонуючий роз'єднувач
Busbar sectionalising switch - секційний вимикач
Bus coupler circuit breaker  шиноз’єднувальний вимикач
Bushing of a transformer - введення трансформатора
Bus section breaker - секційний вимикач
Bypass a circuit breaker - шунтувати вимикач
Bypass switch  обхідний вимикач

С

Cable conductor - жила кабелю
Cable tunnel - кабельний тунель
Calibrated scale - шкала, що калібрується
Calibration curve - градуювальна крива
Calibration report - протокол налаштування
Calorimetric test - калометричні випробування
Capacitance between a conductor and earth  ємність фази на землю
Capacitance between conductors  міжфазна ємність (ємність між дротами)
Capacitive current - ємнісний струм
Capacitive feedback - ємнісний зворотний зв'язок
Capacitive load - ємнісне навантаження
Capacitive potential divider - ємнісний дільник напруги
Capacitive reactance - ємнісний опір
Capacitive residual current - залишковий ємнісний струм
Capacitive susceptance - ємнісна провідність
Capacitor - конденсатор
Capacitor discharge  розряд конденсатора

Capacitor tripping device - пристрій РЗ з відключенням від заздалегідь зарядженого конденсатора
Capacitor voltage supply unit - зарядний пристрій
Capacitor voltage transformer - ємнісний трансформатор напруги
Capacity of a battery - ємність батареї
Carrier channels - ВЧ канали
Carrier current - струм частоти-носія
Carrier current protection - високочастотна РЗ
Carrier frequency - частота-носій
Carrier frequency transmission - передача інформації на частоті-носії
Case - кожух
Cathode ray tube - електронно-променева трубка
Centre zero relay - реле з центральним положенням
Centre - zero scale - шкала з нулем посередині
Certificate of calibration - атестація налаштування
Change of measuring range - зміна діапазону вимірів
Change of state - зміна положення
Change - over switch - перемикач на два напрями
Characteristic equation - характеристичне рівняння
Charge(of capacitors or batteries)  заряд (конденсаторів або батарей)
Charger - зарядний пристрій
Chart - діаграма
Chart recorder - реєструвальний прилад
Check - перевірка
Checking instrument - перевірка систем виміру
Choke - дросель
Choke coil - дросель
Circle diagram - кругова діаграма
Circuit - ланцюг
Circuit breaker - вимикач
Circuit breaker closing - включення вимикача
Circuit - breaker failure protection system - система захисту від ушкодження вимикача 
Circuit breaker opening - відключення вимикача
Circuit breaker position data - інформація про положення вимикача
Circuit characteristics - характеристика ланцюга
Circuit closed in standby position - ланцюг, замкнутий в режимі резервування
Circuit closed in working position - ланцюг, замкнутий в робочому положенні
Circuit in service - ланцюг в роботі
Circuit on standby - ланцюг в резерві
Circuit - opening contact - розмикаючий контакт
Circular impedance characteristic - кругова характеристика реле опору
Circulating current system - система з циркулюючим струмом
Clear the short - circuit - усунути КЗ
Clipper - обмежувач
Clock pulse - синхронізуючий імпульс
Close(to) (manually)  включити (вручну)
Closed - loop control - управління по замкнутому контуру
Close - up faults - ушкодження поблизу місць установки РЗ
Closing(manual)  включення (вручну)
Closing contact - замикаючий контакт
Closing electromagnet - включаючий електромагніт
Closing instruction(manual) - команда на включення(вручну)
Closing mechanism - вмикальний механізм
Closing operation - операція включення
Closing time - час включення
Coarse adjustment - грубе налаштування
Coarse reading - грубий відлік
Coarse setting - ступінь грубого регулювання
Coarse synchronizing - груба синхронізація
Coaxial cable - коаксіальний кабель
Coding - кодування
Coil - котушка
Collapse of frequency - лавина частоти
Collapse of voltage - лавина напруги
Combined instrument transformer  комбінований вимірювальний трансформатор
Common battery - загальностанційна акумуляторна батарея
Communication cable - кабель зв'язку
Comparison circuit - схема порівняння
Compensating voltage - компенсуюча напруга
Compensating winding - компенсуюча обмотка
Compensated network - компенсована мережа
Compensating feedback - компенсуючий зворотний зв'язок
Compiler(program) - компілятор, транслятор
Complementary error - додаткова погрішність
Complex impedance - комплексний опір
Complex plane - комплексна площина
Complex power - комплексна потужність
Components - компоненти
Conductance - провідність
Conductive coupling - гальванічний зв'язок
Conductivity - провідність
Conductor - провідник
Conductor failure - ушкодження дроту
Connection diagram - схема з'єднань
Сonnection layout - розташування дротів
Сonnections - з'єднання
Connector - роз'їм
Constant resistance - постійний опір
Contact - контакт
Contact chatter - вібрація контактів
Contact closed in working position - контакт, замкнутий в робочому положенні
Contact element - контактний елемент
Contact gap - проміжок між контактами
Contact heating - нагрів контакту
Contact in inert gas - контакт в інертному газі (геркон)
Contactless pickup - безконтактний датчик
Contact open in working position - контакт, розімкнений в робочому положенні
Contactor - контактор
Contact resistance - контактний опір
Contact voltage - напруга між контактами
Continuous action - безперервна дія
Continuous control - безперервне регулювання
Continuous output - потужність, що тривало віддається
Control - управління
Control action - керуючий вплив

Control area - район регулювання
Control board(desk) - пульт(щит) управління
Control cable - кабель для вторинних ланцюгів(контрольний кабель)
Control circuit  ланцюг (контур)
Control current - струм управління
Control deviation - керуюче відхилення
Control discrepancy switch - ключ управління з показником невідповідності
Control equipment - апаратура управління
Control instruction - команда управління
Control knob - кнопка управління
Controllability - керованість
Controlled member - об'єкт регулювання
Controlled output - керуюча величина
Controlled value - регульований параметр
Controller  контроллер (регулятор)
Controlling power range - діапазон регулювання
Control of network - управління мережею
Control order - команда управління
Control panel - пульт управління
Control process - процес управління
Control pulse - керуючий імпульс
Control range - діапазон управління
Control switch - ключ управління
Control unit - блок управління
Control voltage - керуюча напруга
Control winding  керуюча обмотка
Converter - перетворювач
Converter substation - перетворювальна підстанція
Conversion of electricity - перетворення електричної енергії
Copper loss - втрати в міді

Core of a transformer  осердя (магнітопровід) трансформатора
Corona effect - ефект корони
Corona loss - втрати на корону
Correction - корекція
Corrective action - коригуючий вплив

 Correct operation of a relay protection - правильна дія РЗ
Corrupted data - спотворені дані
Counting device(of operations)  рахунковий пристрій(операцій)
Couple(to)  замикання (замикати)
Coupling between different phases of two circuits of a highvoltage link  

взаємоиндукція між різними фазами двох ланцюгів високої напруги
Coupling between phases - взаємоиндукція між фазами
Coupling capacitor - конденсатор зв'язку
Coupling filter - фільтр приєднання
Cover of the relay - кришка реле
Current balance - баланс струмів
Current balance relay - диференціальне реле
Current carrying capacity - пропускна спроможність по струму
Current circuit - струмовий ланцюг
Current - dependent - залежний від струму
Current limiter - обмежувач струму
Current limiting reactor - струмообмежувальний реактор
Current relay - струмове реле
Current resonance - резонанс струмів
Current reversal - зміна напряму струму
Current rush - кидок струму
Current transformer - трансформатор струму
Cutoff relay - реле відсічення
Cycle - цикл

D

Damage - ушкодження
Damped oscillations - затухаючі коливання
Damped transient - затухаючий перехідний процес
Damper winding - демпферна обмотка
Damping - демпфування
Damping decrement - декремент загасання
Damping ratio - коефіцієнт демпфування
Dashpot - демпфер
DC/DC сonverter power supply - блок живлення з перетворювачем постійної напруги
Dead band - мертва зона
Dead earth - глухе заземлення
Dead - end feeder - глуха лінія
Dead short - circuit - металеве коротке замикання
Dead time - безструмова пауза
Dead zone of a directional relay - мертва зона спрямованого реле
Deceleration  уповільнення (гальмування)
Decoupling - розв'язка
Decoupling filter - розділяючий фільтр
Dedicated low - voltage wiring - блок допоміжних ланцюгів
Dedicated optical fibre link - спеціалізований оптико-волоконный канал зв'язку
Deenergized line - лінія без напруги
De - exciting device - пристрій збудження

Deflection - відхилення стрілки
Delay link - лінія затримки
Delay relay - реле з уповільненням
Delta connection - з'єднання в трикутник
Delta - star connection - з'єднання зірка-трикутник
Dependent time relay - реле із залежною від часу характеристикою
Dephased - із зрушенням по фазі
Deviation from synchronous time - відхилення від синхронного часу
Differential connection - включення за диференціальною схемою
Differential relay - диференціальне реле
Digital - analogue converter  цифроаналоговий перетворювач
Direct access - прямий доступ
Direct current - постійний струм
Direct current amplifier - підсилювач постійного струму
Direct current circuit - ланцюг постійного струму
Direct - current relay - реле постійного струму
Direct current system / d.c. system - електрична мережа постійного струму
Direct feedback - жорсткий зворотний зв'язок
Directional comparison protection system  система спрямованого захисту
Directional control - контроль напряму
Directional current protection - спрямована струмова РЗ
Directional earth relay - спрямоване реле від замикань на землю і КЗ на землю
Directional neutral current relay - спрямована струмова РЗ нульової послідовності

Directional relay - реле спрямованої дії
Direct overcurrent release - розчіплювач максимального струму
Direct reading - безпосередній відлік
Direct voltage - постійна напруга
Disconnection(of a generating unit)  відключення генератора
Discrepancy switch - покажчик невідповідності
Discriminative protection - селективний захист
Dispatch control - диспетчерське управління
Displacement voltage of the neutral points voltage  напруга зміщення нейтралі
Display - індикатор, присстрій відображення інформації
Distance protection - дистанційна РЗ
Distance protection system - система дистанційного захисту
Distance relay - реле дистанційного захисту
Distance tuning - дистанційне налаштування
Distorted waveform - спотворена форма кривої
Distortion - спотворення
Distortion factor - коефіцієнт спотворення
Distributed capacitance - розподілена ємкість
Distributing board - розподільний щит
Distributing point - розподільний пункт
Distribution of electricity - розподіл електричної енергії
Distribution substation - розподільна підстанція
Disturbance - порушення в енергосистемі, перешкода
Divergent oscillation - наростаючі коливання
Division - ділення
Domain - зона
Double busbar system - подвійна система шин
Double - channel - двоканальний
Double - circuit line - двохланцюгова лінія
Double - delta connection - з'єднання трикутник-трикутник
Double earth fault - подвійне замикання на землю
Double - humped resonance - двогорбий резонанс
Double - phase fault - двофазне ушкодження
Double - throw contact - перекидний контакт
Double - wired conductor - двожильний дріт
Double - wound transformer  двообмоточний трансформатор
Draw - out unit - висувна чарунка
Drive - привід
Dry rectifier - сухий випрямляч
Duplicate supply - двостороннє живлення
Duplex channel - дуплексний канал
Dynamic braking - динамічне гальмування
Dynamic response - динамічна характеристика
Dynamic stability - коливальна стійкість

E

Earth - заземлення
Earth connection - з'єднання із землею
Earth current - струм витоку на землю
Earth detector - індикатор замикань на землю
Earthed neutral - заземлена нейтраль
Earth fault - замикання на землю
Earthing reactor - заземляючий реактор
Earthing resistance - опір заземлення
Earthing resistor - заземляючий резистор
Earthing switch - заземляючий роз'єднувач
Earthing terminal - заземляючий затиск
Earth leakage current - струм витоку на землю
Earth magnetism - геомагнетизм
Earth resistance - опір землі
Earth - wire  заземлений трос
Eddy currents - вихрові струми
Effective measuring range - межа вимірів
Effective range - робоча частина шкали
Effective value  ефективне значення
Efficiency - коефіцієнт корисної дії

Electric line - електрична лінія
Electrical angle - електричний кут
Electrical circuit - електричний ланцюг
Electrical equipment - електроустаткування
Electrical measurement - електричний вимір
Electrical power system - система електропостачання
Electrical power network - електрична мережа
Electrodynamic relay - електродинамічне реле
Electromagnetic relay - електромагнітне реле
Electronic relay - електронне реле
Elliptical impedance characteristic  еліптична характеристика реле опору
Emergency - аварія
Emergency button - аварійна кнопка
Emergency conditions - аварійний режим
Emergency control schemes - протиаварійна автоматика
Emergency crew - оперативно-виїзна бригада
Emergency power supply - аварійне живлення
End - кінець, вивід(обмотки)
End winding - виведення обмотки
Energise(a relay) - подання напруги(струму) в реле,живлення
Energise - подання напруги
Energise accidentally - випадкове(помилкова) подання напруги
Energised facility - установка під напругою
Environmental withstand - допустимі кліматичні умови
Equivalent impedance - еквівалентний опір
Erase - видалення
Error correction - усунення помилки
Error detection - виявлення помилки
Even harmonic - парна гармоніка
Evenly divided scale - рівномірна шкала
Exact - reading scale - шкала точного відліку
Exchange power control - управління перетіканнями потужності
Excitation response - швидкість наростання збудження
Exciter - збудник
Exciting current - струм збудження
Expanded scale - розтягнута шкала
Extension cord - подовжувальний шнур
External characteristic - зовнішня характеристика
External disturbance - зовнішнє ушкодження
External feedback - зовнішній зворотний зв'язок
External terminal - зовнішній затиск
Extra high voltage network - мережа надвисокої напруги
Extremely sensitive - надзвичайно чутливий

F

Factory tests - заводські випробування
Failure - несправність
Failure rate - інтенсивність відмов
Failure to operate(of protection equipment) - відмова в спрацьовуванні (пристрою захисту)
Falling out of step - вихід з синхронізму
False operation(tripping) - неправдиве спрацьовування
False switching - помилкове включення
Fault - ушкодження
Fault between laminations - замикання між пластинами магнітопровода
Fault between turns - міжвиткове КЗ
Fault between windings - КЗ між обмотками
Fault clearance - відключення КЗ
Fault clearing, short circuit clearing - відключення струмів КЗ
Fault clearance time - повний час від моменту виникнення до моменту відключення КЗ
Fault current - струм ушкодження
Fault detector - пусковий орган
Faulted circuit impedance - опір пошкодженого ланцюга
Fault impedance - повний опір в місці ушкодження
Fault rate - інтенсивність відмов
Fault resistance - активний опір в місці ушкодження

Fault signaling - аварійна сигналізація
Faults in rotor winding - ушкодження в обмотці ротора
Faults recorder - аварійний осцилограф
Fault situation - аварійний режим
Fault statistics - статистика ушкодження
Fault throwing switch - короткозамикач
Feedback - зворотний зв'язок
Feedback amplifier - підсилювач із зворотним зв'язком
Feedback control - управління із зворотним зв'язком
Feedback ratio - коефіцієнт зворотного зв'язку
Feeder - живляча лінія
Feeder bay - приєднання розподільного електричного пристрою
Feeder circuit - breaker - лінійний вимикач
Feeder disconnector - лінійний роз'єднувач
Feeding transformer - живлячий трансформатор
Ferrit core  феритове осердя (магнітопровід)
Fiber optics - оптоволокно
Fidelity - якість відтворення
Field suppression - гасіння поля
Field circuit - розподільна мережа
Field winding - обмотка збудження, обмотка підмагнетовування

Figure of merit - добротність
Fine reading - точний відлік
Fine setting - ступінь точного регулювання
First harmonic - перша гармоніка
Five - legged transformer - п'ятистержневий трансформатор
Fixed contact - нерухомий контакт
Fixed setpoint control - управління з фіксованою установкою
Fixed value control - управління по параметру
Flash - overcurrent - струм перекриття
Fleeting indication - стежаче свідчення
Flexible cable - гнучкий кабель
Flip - flop - тригер
Floating point - плаваюча кома
Float switch - поплавцеве реле
Flow diagram - структурна схема
Flush mounting - втоплений монтаж
Follow - up control - стежаче регулювання
Follow - up system - стежача система
Forced control - сильне регулювання
Forced outage - вимушене відключення
Frame fault - замикання на корпус
Frame protection - захист від замикання на корпус
Free oscillation - вільні коливання
Frequency band - смуга частот
Frequency changer - перетворювач частоти
Frequency control - регулювання частоти
Frequency converter - перетворювач частоти
Frequency division - ділення частоти
Frequency drift - відхід частоти
Frequency interval between channels - частотний інтервал між каналами
Frequency meter - частотомір
Frequency modulation - частотна модуляція
Frequency multiplication - множення частоти
Frequency reduction - зниження частоти
Frequency relay - реле частоти
Frequency response - частотна характеристика
Functional block - функціональний блок
Fundamental error of measurement - основна погрішність виміру
Fuse link - плавка вставка

G

Galvanometer - гальванометр
Gang(ed) control - групове управління
Gapless - без повітряного проміжку
Gas insulated metal - enclosed substation  броньована підстанція з газовою ізоляцією
Gas - pressure cable - газонаповнений кабель
Gas turbine set - газотурбінний агрегат
Gate - логічний елемент
General operating test - повна перевірка
Generator operation - генераторний режим
Generator protection - захист генератора
General - purpose instrument  універсальний вимірювальний прилад
Generating capacity - встановлена потужність генератора
Generating set - електрогенеруючий агрегат
Generating unit - енергоблок
Generation - генерація
Generation of electricity - виробництво електроенергії
Generation system - електрогенеруюча система
Generator - генератор
Generator protection - релейний захист генератора
Generator - transformer - блок генератор-трансформатор
Generator - transformer protection - релейний захист блоку генератор-трансформатор
Geothermal power station - геотермічна електростанція
Governing equipment - кероване устаткування
Grading margin - ступінь селективності
Group drive - груповий привід

H

Half - cycle - напівперіод
Half - wave - напівперіод
Half - wave rectifier - однонапівперіодний випрямляч
Harmonic - гармоніка
Harmonic component - гармонійна складова
Harmonic content - зміст гармонік
Harmonic function - гармонійна функція
Harmonic oscillation - гармонійне коливання
Heavy conditions  важкий режим (післяаварійний)
High - frequency power line carrier blocking - блокування по ВЧ каналу
High - frequency cable - високочастотний кабель
High - frequency generator - високочастотний генератор
High frequency disturbance test - перевірка завадостійкості
Higher harmonic - вища гармоніка
Higher harmonic voltage - напруга вищих гармонік
High impedance differential protection  подовжній диференціальний захист з реле, що має великий опір
High set - грубий ступінь
High - speed automatic reclosing - швидкодіюче АПВ
High - speed automatic reclosing device  пристрій швидкодіючого АПВ
High - speed excitation system - швидкодіюча система збудження
High voltage - висока напруга
High - voltage d.c. link / HVDC link –електропередача (вставка) постійного струму
High - voltage installation - установка високої напруги
High - voltage network - мережа високої напруги
High - voltage side - сторона високої напруги
High - voltage switchgear  розподільний пристрій (електроустаткування) високої напруги
High - voltage winding - обмотка високої напруги
Holding winding - утримуюча обмотка
Hunting - гойдання(у енергосистемі), коливання(у системірегулювання)
Hydroelectric set - гідроагрегат
Hydroelectric power station - ГЕС
Hysteresis - гістерезис
Hysteresis loop - петля гістерезису
Hysteresis losses - втрати на гістерезис

I

Ideal rectifier - ідеальний випрямляч
Ideal synchronizing - точна синхронізація
Idle - відсутність навантаження
Idling - робота на холостому ході
Idling conditions - робота на холостому ході
Immobilization - вивід з роботи
Impedance earthed(neutral) system - електрична мережа із заземленою через опір нейтраллю
Impedance protection - дистанційний захист
Impedance relay - реле дистанційного захисту
Impedance voltage(of a transformer) - напруга короткого замикання(трансформатора)
Impulse counter - лічильник імпульсів
Impulse voltage test - перевірка ізоляції
Inadvertent operation - неправильне спрацьовування
Incorrect operation of relay protection - неправильна дія захисту
Independent time relay - реле з незалежною витримкою часу
Indicating relay - реле вказівне
Indicator lamp - сигнальна лампа
Indicator of sense of rotation - покажчик напряму обертання
Indoor apparatus - апаратура внутрішньої установки
Indoor substation - закрита підстанція
Indoor switch - gear - закритий розподільний пристрій
Induced voltage - наведена напруга
Inductance - індуктивність
Induction relay - індукційне реле
Industrial interference - індустріальні перешкоди
Inertia constant - постійна інерція
Inherent feedback - внутрішній зворотний зв'язок
Initial commissioning test - пуско-налагоджувальні випробування
Initial symmetrical(sub transient) short circuit  початкове значення симетричного струму (надперехідний струм) КЗ
Injection type relay - захист з накладенням допоміжної напруги
Inoperative direction - напрям дії
Input winding - вхідна обмотка
Insensitivity of control - нечутливість системи управління (мертва зона)
In service - в експлуатації
Inspection - огляд
Instability - нестійкість
Instantaneous element - безінерційна ланка
Instantaneous relay - швидкодіюче реле(миттєвої дії)
Instantaneous value - миттєве значення
Instruction - команда
Instructions for mounting and maintenance of relays -інструкції по монтажу і обслуговуванню реле
Instrument - прилад
Insulation resistance - опір ізоляції
Insulation test voltage - напруга випробування ізоляції
Integral action - інтегральна дія
Integral control - інтегральне регулювання
Integral controller - інтегральний регулятор
Integrated circuit - інтегральна схема
Integrator - інтегратор
Interconnected systems - об'єднані енергосистеми
Interconnection - міжсистемний зв'язок
Interference - вплив
Interference effect - вплив перешкод
Interference filter - фільтр від впливу перешкод
Interference frequency - частота наведення(перешкоди)
Interference immunity against electrostatic discharge(ESD) -завадостійкість 

мікропроцесорних облаштувань релейного захисту при електростатичних розрядах
Interference immunity against transient signal(burst) -завадостійкість 

мікропроцесорних РЗ при одиничних імпульсах перехідних процесів
Interference pulse - імпульс перешкоди

Interlock - блокування
Interlocking signal - блокуючий сигнал
Intermittent contact - переривчастий контакт
Intermittent earth - замикання, що перемежається, на землю
Intermittent fault - нестійке ушкодження
Internal combustion set - електроапарат з двигуном внутрішнього згорання
Internal short circuit - КЗ в зоні дії захисту
Intertripping - телевідключення
Iterruption arc - дуга при розмиканні контактів
Interruption of supply - порушення електропостачання
Interturn fault - міжвиткове КЗ
Inverse characteristic relay - реле з зворотнозалежною часострумовою характеристикою

Ionization - іонізація
Iron losses - втрати в сталі
Iron - nickel accumulator - акумулятор залізонікелевий
Islanding - вивід на ізольовану роботу
Isolated network operation - ізольована робота
Isolated system - ізольована енергосистема
Isolating transformer  ізолюючий (що розділяє)трансформатор
Isolation transformer - розділовий трансформатор
Issuing of permit to work - дозвіл на виробництво робіт
In - rush, Inrush - кидок струму

J

Jack - гніздо
Jumper - перемичка
Jumper board - складання затисків
     

      K
Kiosk substation - КРУ
Knob - перемикач
Knob with indicator - перемикач з сигналізацією

L

Lagging current - відстаючий струм
Latch(ing) relay, Latch - in relay - реле із запам'ятовуванням
Lightning discharge - розряд блискавки
Line - лінія
Linear scale - лінійна шкала
Linear system - лінійна система
Line attenuation - лінійне загасання
Line charging current - струм заряду лінії
Line - drop compensation - компенсація падіння напруги в лінії
Line fault - ушкодження на лінії
Line impedance angle - кут повного опору лінії
Line protection - релейний захист лінії
Line reactor - лінійний реактор
Line trap - лінійний загороджувач
Line voltage - лінійна напруга
Live circuit breaker - включений вимикач
Live line - лінія під напругою
Load in a system - навантаження енергосистеми
Load curve  графік навантаження

Load duration curve - графік тривалості навантаження
Loading resistor - резистор навантаження
Local back - up(circuit and substation)  місцеве резервування(ланцюги і підстанції)
Local control - місцеве управління
Logical multiplication - логічне множення
Logic scheme - логічна схема
Longitudinal differential protection  подовжній диференціальний захист
Long power transmission line - лінія довгих електропередач
Loop current - контурний струм
Loss - втрата
Loss of excitation - втрата збудження
Loss of load - втрата навантаження
Loss of stability - втрата стійкості
Loss of synchronism - втрата синхронізму
Loss of synchronism relay - реле захисту від асинхронного ходу
Loss of voltage - втрата напруги
Loss of voltage relay - реле втрати напруги
Lower frequency(to) - зниження частоти
Low frequency - низька частота
Low - frequency amplifier - низькочастотний підсилювач
Low - frequency band - низькочастотний діапазон
Low - operating - повільнодіючий
Low set - чутливий ступінь
Low voltage - низька напруга
Low - voltage apparatus - апаратура низької напруги
Low - voltage side - сторона нижчої напруги

M

Magnetic circuit - магнітопровід
Magnetizing current - струм намагнічення
Magnetizing inrush - кидок струму намагнічення
Magnetizing inrush restrain - гальмування при кидку струму намагнічення
Magnetoelectric relay - магнітоелектричне реле
Magnetomotive force - магніторушійна сила
Magnitude of disturbance - міра порушення режиму
Main busbar - робоча система шин
Main generator - основний генератор
Main protection - основний захист
Mains voltage - напруга мережі
Maintenance  експлуатація (технічне обслуговування)
Maintenance tests - експлуатаційні випробування
Maintenance work - поточний ремонт
Make and break - перемикання
Make - break time - час безструмної паузи АПВ
Make time - повний час включення
Making capacity - потужність включення
Maloperation - неправдива дія
Manned substation - підстанція з обcлуговуючим  персоналом
Manual closing - включення вручну 
Manual opening - відключення вручну
Manual regulation - ручне регулювання
Master controller - центральний регулятор
Master substation - опорна підстанція
Matching transformer - узгоджувальний трансформатор

Maximum asymmetric short circuit current  максимальне значення несиметричного струму КЗ
Maximum voltage relay - реле максимальної напруги
Mean deviation - середнє відхилення
Mean square error - середньоквадратична помилка
Mean time between failure - середній час між ушкодженнями
Mean value(of a periodic quantity)  середнє значення (періодичній складовій)
Measuring relay - вимірювальне реле
Measuring winding - вимірювальна обмотка
Mechanical durability - механічна стійкість
Medium - voltage - середня напруга
Medium - voltage winding - обмотка середньої напруги
Megger - мегомметр
Men on duty - черговий персонал
Mercury contact - срібний контакт
Mesh(of a system) - кільцева лінія з декількома джерелами живлення
Meshed system - складно-замкнута електрична мережа
Mesh - current method - метод контурних струмів
Meshed network - замкнутий ланцюг
Metalclad cable - броньований кабель
Metal - clad installation - комплектний розподільний пристрій
Metering winding - вимірювальна обмотка
MHO - type distance relay - реле провідності дистанційного захисту
Microwave pilot protection system - система захисту з НВЧ каналом
Midposition - середнє положення
Mimic diagram(wall diagram) - мнемосхема
Mismatch - розузгодження
Mounting - монтаж
Movable contact - рухливий контакт
Moving coil - рухлива котушка
Moving coil relay - реле з рухливою котушкою
Moving part - рухлива частина
Motor protection - захист електродвигуна
Multi - ended line - багатокінцева(розгалужена) лінія
Multilayer mounting - багатошаровий монтаж
Multiple earth fault - багатократне замикання на землю
Multiple shot reclosing - багатократне автоматичне повторне включення (АПВ)
Multiposition relay - багатопозиційне реле
Multisection coil - багатосекційна котушка
Multishot reclosing - багатократне АПВ
Multi - terminal line - розгалужена лінія
Multiwinding transformer  багатообмотувальний трансформатор

N

Negative bias - негативне зміщення
Negative sequence component - складова зворотної послідовності
Negative sequence impedance - опір зворотної послідовності
Network with directly earthed neutral - мережа з глухозаземленою нейтраллю
Network with isolated neutral - мережа з ізольованою нейтраллю
Neutral current - струм нульової послідовності
Neutral point - нульова точка
Neutral point connection - режим нейтралі
Neutral point displacement voltage - напруга зміщення нейтралі
Neutral point in a polyphase system - нейтральна точка багатофазної системи
Noisefree - без перешкод
Noise immunity - завадостійкість
Noise level - рівень перешкоди
Noise limitation - обмеження перешкоди
No - load current - струм холостого ходу
No - load operation - робота на холостому ходу
No - load power - потужність холостого ходу
No - load test - випробування на холостому ходу
No - load voltage - напруга холостого ходу
Nominal current  номінальний струм

Nominal transformation ratio - номінальний коефіцієнт трансформації
Nominal value - номінальна величина
Nominal voltage - номінальна напруга
Nominal voltage of a system - номінальна напруга електричної мережі
Non - attended substation - підстанція, що не обслуговується
Non - availability - неготовність
Non - availability factor - коефіцієнт неготовності
Non - linear distortion - нелінійне спотворення
Non - linearity - нелінійність
Non - linear resistor - нелінійний опір
Non - sinusoidal current - несинусоїдальний струм
Non - successful reclosing - неуспіх АПВ
Normally closed break contact - нормально замкнутий розмикаючий контакт
Normal operating condition - нормальний режим
Nuclear(thermal) power station - атомна електростанція
Number of auto - reclose - число циклів АПВ
Numerical relay - цифрове реле релейного захисту

O

Occur - траплятися, відбуватися (про будь-яку подію)
On - load tap - changer - пристрій РПН
Open - відключення
Open - delta connection - з'єднання в розімкнений трикутник
Opening - відключення
Opening mechanism - відключаючий механізм
Opening time - час відключення
Open - loop control - управління в розімкненому контурі
Operating characteristic - характеристика спрацьовування реле
Operating availability - оперативна готовність
Operating current - оперативний струм
Operating impedance - робочий імпеданс (повний опір)
Operating lag(of a relay) - затримка реле при спрацьовуванні
Operating range - робочий діапазон
Operating rules - правила експлуатації
Operating time of protection - час спрацьовування захисту
Operating times accuracy - точність часу спрацьовування
Operating voltage(in a system) - робоча напруга електричної мережі
Operating winding - робоча обмотка
Operative current - оперативний струм
Operative direction - напрям дії
Optical fibre cable - волоконно-оптичний кабель
Optical link pilot protection system - система захисту із зв'язком за допомогою світлопровода
Optocupler - оптична розв'язка, оптопара
Oscillations - коливання
Oscillogram - осцилограма
Oscillograph - осцилограф
Outage - вихід з ладу, аварійне відключення
Outdoor apparatus - апаратура для зовнішньої установки
Outdoor substation - відкрита підстанція
Outdoor switch - gear - ОРУ
Outgoing(incoming) feeder - приєднання лінії, що відходить(що живить)
Out - of - operation - бездіяльний
Out - of - order - несправний
Out of service - вивести з роботи
Out - of - step protection - РЗ від асинхронного ходу
Out - of - tune - розладнаний
Output circuit - вихідний ланцюг
Output current - вихідний струм
Output relays module - блок вихідних реле
Output stage - вихідний каскад
Output terminal - вихідний затиск
Output value - вихідна величина
Output winding - вихідна обмотка
Over. protection - захист максимального принципу дії
Overcurrent protection - максимальний струмовий захист
Overcurrent relay - реле максимального струмового захисту
Overcurrent time - lag relay - максимальний струмовий захист із залежною часострумовою характеристикою
Over - excitation - перезбудження
Overfluxing in power transformers  перезбудження силових трансформаторів
Overhaul - капітальний ремонт
Overhead line - капітальний ремонт
Overhead system - повітряна електрична мережа
Overheating - захист від перегрівання
Overload - перевантаження
Overload operation - режим перевантаження
Overload protection - захист від перевантаження
Overload protection system - система захисту від перевантаження
Overload relay - реле захисту від перевантаження
Overall fault clearance time - повний час усунення ушкодження
Overreaching(for a distance protection system)  розширена зона (для дистанційного захисту)
Overshoot - перерегулювання
Overvoltage - перенапруження
Overvoltage protection - захист максимальної напруги

P

Packet switch - пакетний вимикач
Pairing  парний скрутень
Pair twisting - парний скрутень
Parallel access - паралельний доступ
Parallel connection - паралельне з'єднання
Paralleling - включення на паралельну роботу
Parallel operation - паралельна робота
Passing contact - прослизаючий контакт
Peak load - максимум навантаження
Percentage differential protection - диференціальна РЗ з процентним гальмуванням
Percentage relay - процентне реле
Periodic component - періодична складова
Permanent fault - стійке ушкодження
Permissible error - допустима погрішність
Permissive intertripping - передача відключаючого сигналу від РЗ протилежного кінця ВЛ
Permissive overreach distance protection system  система дистанційного захисту з розширеною зоною і дозволяючим сигналом
Permissive protection system - система захисту з дозволяючим сигналом

Permissive underreach distance protection system -система дистанційного захисту із скороченою зоною і дозволяючим сигналом
Petersen coil - котушка Петерсона
Phase - фаза
Phase coincidence - збіг фаз
Phase comparator relay - реле порівняння фаз
Phase comparison protection system  система диференціального фазного захисту
Phase current - струм фази
Phase displacement - фазове зміщення
Phase - earth coupling - однофазна індуктивність
Phase lag - запізнювання по фазі
Phase opposition - протифаза
Phase segregated differential current position  пофазний диференціальний струмовий захист
Phase sequence - послідовність фаз
Phase sequence indicator - показник чергування фаз
Phase sequence reversal - зміна порядку чергування фаз
Phase - sequence test - перевірка порядку чергуванняфаз
Phase - shifting network - фазозсувна схема
Phase to earth voltage(line to ground voltage)  фазна напруга
Phase - to - groundl fault - замикання фази на землю, КЗ на землю
Phase to phase voltage(line to line voltage)  лінійна напруга
Phase to neural voltage(line to neural voltage)  фазна напруга
Phase unbalance protection - захист від несиметрії фаз
Phase voltage of a winding - фазна напруга обмотки
Pick - up, Pickup - пуск захисту або елементу захисту
Pl equivalent - П-образна схема заміщення
Pilot protection system - система захисту з контрольними сигналами
Plant motor - електродвигун власних потреб
Plug - and - jack - штепсельний з'єднувач
Plug - and - socket connection - штепсельне з'єднання
Plug - in unit - змінний блок
Pneumatically operated switch - вимикач з повітряним приводом (повітряний вимикач)
Pointer - показник, стрілка
Pointer stop - обмежувач ходу стрілки
Point of connection - точка приєднання
Point - to - point - wiring - навісний монтаж
Polarity - полярність
Polarity indicator - прилад для визначення полярності
Polarity reversal - зміна полярності
Polarity test - перевірка полярності
Polarized relay - поляризоване реле
Pole(of an equipment) - полюс(пристрої)
Pole(of a d.c. system) - полюс(мережі постійного струму)
Pole - mounted substation - щоглова підстанція
Portable instrument - переносний прилад
Portable test equipment - переносний випробувальний пристрій
Position indicator - сигналізація положення
Positive feedback - позитивний зворотний зв'язок
Positive sequence - пряма послідовність
Positive sequence component - складова прямої послідовності
Positive sequence impedance - повний опір прямої послідовності
Positive voltage - позитивна напруга
Post - emergency conditions - післяаварійний режим
Post - fault conditions - післяаварійний режим
Potential - потенціал
Potential difference - різниця потенціалів
Power - потужність
Power charge controller - контроллер управління потужністю
Power factor - коефіцієнт потужності(cos φ)
Power frequency - промислова частота
Power - frequency characteristic  характеристика потужність-частота
Power - frequency control - управління частотою і активною потужністю
Power input - вхідна потужність
Power limitation - обмеження потужності
Power line carrier protection system - система захисту звисокочастотним зв'язком
Power output - вихідна потужність
Power relay - реле потужності
Power station - електростанція
Power supply module - блок живлення
Power system separation - ділення енергосистеми
Power swing blocking - блокування при гойданнях
Power unit - блок живлення
Prearcing time - час плавлення
Protection against . - захист від чого-небудь
Press - button switch - кнопковий перемикач
Pressure monitoring device - реле контролю тиску
Pressure transducer - датчик тиску
Primary - первинний
Primary circuit - первинний ланцюг
Primary control - первинне регулювання
Primary testing - перевірка РЗ первинним струмом
Primary winding - первинна обмотка
Program of routine maintenance - графік періодичних перевірок
Protected line - що захищається ЛЕП
Protected zone - зона, що захищається
Protection - захист
Protection against short circuits - захист від КЗ
Protection assembly - комплект защит
Protection by phase comparison - РЗ, що порівнює фази струмів по кінцях зони, що захищається
Protection device  пристрій захисту
Protection relay - реле захисту
Protection system - система захисту
Protection winding - обмотка СТ
Protection with stage(step) acceleration - РЗ з прискоренням зони, що має витримку часу
Pulsating current - пульсуючий струм
Pulsating voltage - пульсуюча напруга
Pulse edge - фронт імпульсу
Pulse - relay - імпульсне реле
Pulse train - серія імпульсів
Pumped storage station - ГАЕС
Pump - storage generating set  генеруючий пристрій ГАЕС
Pump - turbine - насос-турбіна
Push - button control group - кнопкова станція

Q

Quadrature - axis subtransient reactance  надперехідний реактивний опір по поперечній осі
Quadruple conductor - чотирипровідний провідник(4 дроти на фазу)
Quenched spark - іскра при розмиканні

 

R

Radial network - радіальна мережа
Radiated electromagnetic field test  перевірка завадостійкості
Radio link protection - захист з радіоканалом
Random synchronizing - включення без контролю синхронізму
Range of adjustment - діапазон регулювань
Range of regulation - зона регулювання
Range of scale - діапазон шкали
Rate of change of... relay - реле похідної...
Rated capacity - номінальна ємність
Rated current of a contact - номінальний струм контакту
Rated thermal current - номінальний струм термічної стійкості
Rate of pulse rise - крутизна фронту імпульсу
Reactance - реактивний опір
Reactance relay - реле реактивного опору
Reactive energy - реактивна енергія
Real time - реальний час
Receiver - приймач
Receiving channel - канал прийому
Receiving level - рівень прийому
Recovery time - час відновлення
Recovery voltage - напруга, що відновлюється
Rectification - випрямлення
Rectifier - випрямляч
Reduced measuring error - відносна погрішність вимірювання

Reduced voltage - знижена напруга
Reed relay - реле з герконом
Reference instrument - еталонний прилад
Reference value - відносна величина
Reference voltage - опорна напруга
Reflected wave - відбита хвиля
Register - регістр
Regulating point - точка регулювання
Regulation - регулювання
Regulation level - рівень регулювання
Regulator performance - якість регулювання
Relative error - відносна погрішність
Relay - реле
Relay box - релейна шафа
Relay cabinet - релейна шафа
Relay characteristic angle - кут максимальної чутливості
Relay coil - котушка реле
Relay cubicle - релейна шафа
Relay element - елемент реле
Relay protection - релейний захист
Relay set - комплект реле
Relay winding - обмотка реле
Release - розчіплювач
Release lag - уповільнення відпуску
Reliability - надійність
Reliability index - показник надійності
Remote backup protection - захист, що здійснює далеке резервування
Remote control - телекерування
Remote indication - телесигналізація
Remote setting - дистанційне введення установок
Remote supervision - телеконтроль
Repair - ремонт
Reserve busbar - резервна система шин
Reset - повернення
Reset push - button - кнопка повернення
Reset time - час повернення
Resetting value - параметр повернення
Residual capacitive voltage - залишкова ємнісна напруга
Residual current - залишковий струм
Residual magnetization - залишкове намагнічення
Residual voltage - напруга нульової послідовності
Resistance - активний опір
Resistivity - питомий опір
Resonance - резонанс
Resonant earthed(neutral) system / arc - suppression - coil -earth(neutral system)  

електрична мережа з дугогасною котушкою
Response level - поріг спрацьовування
Response time - час відгуку
Restore - відновлювати
Restraining coil - гальмівна котушка
Retardation time - час повернення
Returning percentage - коефіцієнт повернення
Returning value - значення повернення
Return to initial position - повернення(реле)
Reversible hydroelectric set - оборотний гідроагрегат
Rigid wiring - жорсткий монтаж
Ring connection - кільцева схема
Ring feeder(loop) - кільцева схема з одним джереломживлення
Ring mains - кільцева мережа
Ring network - кільцева мережа
Ring operation - кільцевий режим роботи
Rise in frequency - підвищення частоти

Risk of failure - небезпека виникнення несправності
Root - mean - square deviation  середньоквадратичне відхилення
Root - mean - square value  середньоквадратична величина
Rotor earth fault protection - захист ротора від замикань на землю
Rotor fault to frame - замикання обмотки ротора на корпус
Rotor winding - обмотка ротора
Rough reading scale - шкала грубого відліку
Round - the - clock service - цілодобове обслуговування
Running - down  вибіг

S

Sample - вибірка
Sampling cycle - цикл вимірів
Saturable reactor - реактор, що насичується
Saturable transformer - трансформатор, що насичується
Saturation - насичення
Saturation area - ділянка насичення
Saturation region - область насичення
Scale - шкала
Schematic diagram - структурна схема
Screening - екранування
Screw connection - скрутень дротів
Secondary - вторинний
Secondary circuit - вторинний ланцюг
Secondary control - вторинне управління
Secondary leads - вторинні затиски
Secondary relay - вторинне реле
Secondary testing - перевірка РЗ вторинним струмом і напругою
Secondary voltage - вторинна напруга
Secondary winding - вторинна обмотка
Selective protection - селективний захист
Selective time interval - ступінь селективності
Selective tripping plan - карта селективності
Selectivity - селективність
Selector switch disconnector - шинний роз'єднувач
Self - adjusting control - самоналагоджувальна система управління
Self - contained supply - автономне живлення
Self - control - пряме управління
Self excitation - самозбудження
Self - extinguishing fault - ушкодження(ушкодження, яке усувається саме по собі без відключення об'єкту), що самоусувається
Self - holding contact - самоутримний контакт

Self inductance - самоіндукція
Self - locking contact - самоутримний контакт
Selfmonitoring - самоконтроль
Self - oscillation - саморозгойдування

Self - regulation - саморегулювання
Selfsupervision - самоконтроль
Self - synchronization - самосинхронізація
Self - synchronizing - самосинхронізація
Semiautomatic system - напівавтоматична система
Semiconductor - напівпровідник
Semigraphical method - графоаналітичний метод
Senior shift engineer - старший диспетчер в зміні
Sensitive - чутливий
Sensitive . protection - чутливий захист чого-небудь
Sensitivity - чутливість
Sensitivity of a directional element  чутливість спрямованого елементу
Separated windings - роздільні обмотки
Separate network - відособлена мережа
Sequence control - послідовне управління
Serial access - послідовний доступ
Serial communication - послідовний інтерфейс
Series capacity - подовжня ємнісна компенсація
Series compensation - послідовна компенсація
Series connection - послідовне з'єднання
Setting - установка
Setting current - струм установки
Setting knob - перемикач для регулювання установок
Setting up of actual value - регульована установка
Setting value - величина установки
Shield - екран
Shielding case - екрануючий кожух
Shift engineer - диспетчер в зміні
Shock current - ударний струм
Shop instructions - заводські інструкції
Short circuit - КЗ
Short circuit and earth - КЗ на землю
Short - circuit between phases - міжфазне КЗ
Short - circuit characteristic - характеристика КЗ
Short - circuit current - струм КЗ
Short - circuit current calculations - розрахунки струмів КЗ
Short - circuit earth current - струм КЗ на землю
Short - circuit protection - захист від КЗ
Short - circuit power - потужність КЗ
Short - circuit through an arc - дугове КЗ
Short - circuit to earth - КЗ на землю
Shunting - шунтування
Signal level - рівень сигналу
Signal - to - noise ratio - відношення сигнал-перешкода
Signal transmission time - час передачі сигналу
Silent arc - стійка дуга
Simplex channel - симплексний канал
Simulation test - випробування на моделі
Simulator - моделюючий пристрій
Single - acting autoreclosing - одноразове АПВ
Single - channel - одноканальний
Single - circuit line - одинланцюгова ЛЕП
Single conductor - один дріт
Single - element relay  одноелементне реле

Single feeder(radial feeder) - радіальна лінія
Single - line diagram - однолінійна схема електричної мережі
Single phase automatic reclosing control equipment –однофазний пристрій автоматичного повторного включення
Single - phase autoreclosing - однофазне АПВ
Single - phase short circuit - однофазне КЗ
Single - phase transformer - однофазний трансформатор
Single pole automatic reclosing control equipment -однополюсне облаштування повторного включення
Single - pole switch - однополюсний вимикач
Single shot reclosing - одноразове АПВ
Single supply - одностороннє живлення
Single - three - phase reclosing - комбіноване(одно-трифазне) АПВ
Single - turn current transformer  одновитковий трансформатор струму
Slave - relay - реле-повторювач
Slip - ковзання
Slip frequency - частота ковзання
Slow - operating relay - повільнодіюче реле
Slow - release relay - реле з уповільненням наповернення
Slugged - інерційний
Smooth variation - плавна зміна
Solar battery - сонячна батарея

Soldered connection - паяне з'єднання
Soldering - паяння
Solid - state relay - безконтактне реле
Solid - state switch - напівпровідниковий перемикач
Solidly - earthed neutral - глухо заземлена нейтраль
Spare parts - запасні частини
Spark capacitor - іскрогасний конденсатор
Spark - quenching circuit - іскрогасний ланцюг
Specified value - задана величина
Speeder motor - двигун регулятора швидкості
Speed governor - регулятор швидкості
Speed regulator - регулятор частоти обертання
Speed - up - збільшення частоти обертання
Speed - voltage generator - тахогенератор
Split - phase - розщеплена фаза
Split secondary - вторинна обмотка з виведеною середньою точкою
Split the busbars - ділення шин
Spring contact - контактна пружина
Spur line - відпаювання
Spurious capacitance - паразитна місткість
Spurious opening - неправдиве відключення
Spurious tripping - неправдиве відключення
Stability - стійкість
Stable - стійкий
Stable conditions - стійкий режим
Stable oscillation - стійкі гойдання
Stage change point - точка зміни ступеня РЗ
Stage circuit - каскадна схема
Stage length - довжина ступеня
Stand by set - резервна установка
Stand - by supply - резервне живлення
Star - delta switch - перемикання із зірки на трикутник
Star - star connection - з'єднання зірка-зірка
Starting relay - пускове реле
Starting situation - пусковий режим
Starting tests - пускові випробування
Start of parallel operation - початок паралельної роботи
Start operation(of a relay) - початок роботи(реле)
Start - stop control - переривчасте управління
Static compensator - статичний компенсатор
Static convertor - статичний перетворювач
Static error - статична помилка
Static excitation - статичне збудження
Station auxiliaries voltage - напруга власних потреб
Stator earth fault protection - РЗ від замикань на землю в статорі

Stator fault to frame - замикання статора на корпус
Stator winding - обмотка статора
Steady - state short - circuit current - струм КЗ, що встановився
Steady - state stability - статична стійкість
Step action - ступінчаста дія
Step - by - step method - метод послідовних інтервалів
Step - down substation - знижуюча підстанція
Step - down transformer - знижувальний трансформатор
Step change point - точка зміни ступеня
Step length - довжина ступеня
Stepless control - плавне регулювання
Stepped characteristic - ступінчаста характеристика
Step response - перехідна характеристика
Step - up substation - підстанція, що підвищує
Step - up transformer - трансформатор, що підвищує
Stray capacitance - паразитна місткість
Stray currents - паразитні(блукаючі) струми
Stub line - шлейф
Subsequent faults - послідовні ушкодження
Substation - електрична підстанція
Substation relay room - приміщення релейного захиступідстанції
Subtransient reactance - надперехідний реактанс
Successful reclosing - успішне АПВ
Sudden change in frequency - раптова зміна частоти
Sudden load variation - раптова зміна навантаження
Superconductivity - надпровідність
Superimposed current - накладений струм
Superposition method - метод накладення
Supervising person - начальник зміни
Supervision trip circuit - контроль ланцюга відключення
Supply(a relay) - живлення(реле)
Supply interruption - порушення живлення
Supply point - точка живлення
Supply voltage - напруга живлення
Supply voltage of auxiliary circuits - напруга живлення вторинних ланцюгів(власних потреб)
Susceptance - реактивна провідність
Sustained fault - стійке ушкодження
Sustained short - circuit current - стійкий струм КЗ
Sweep - розгортка
Swing blocking - блокування від гойдань
Swinging of conductors - танець дротів
Switch - перемикач
Switchable busbar - система шин, що секціонуєтьсявимикачем
Switched busbar circuit - breaker - секційний вимикач
Switch - gear - розподільний пристрій

Symmetrical component method - метод симетричних складових
Symmetrical short circuit - симетричне КЗ
Symmetrical voltage - симетрична напруга
Synchronization - синхронізація
Synchronize - синхронізуватися, відбуватися одночасно
Synchronizing relay - реле синхронізації
Synchronism - синхронізм
Synchronoscope - синхроноскоп
Synchronous compensator - синхронний компенсатор
Synchronous generator - синхронний генератор
Synchronous motor - синхронний двигун
Synchronous operation - синхронна робота
Synchronous reactance - синхронний реактанс
Systematic error - систематична погрішність
System configuration - конфігурація електричної мережі
System control - управління енергосистемою
System control centre - диспетчерський центр енергосистеми
System diagram - схема системи(електричної мережі)
System operational diagram - оперативна схема електричної мережі

T

Тар changing - зміна відпаювання на трансформаторі (робота РПН)
Tapped line(teed line) - магістральна лінія
Telecommunication - зв'язок
Telecommunication line - лінія зв'язку
Telemetering - телевимірювання
Teleregulation - телерегулювання
Temperature - dependant - залежний від температури
Terminal - затиск, термінал
Terminal voltage - напруга на затисках
Tertiary winding - третинна обмотка
Thermal limit burden - навантаження вторинного ланцюга по умові термічної стійкості
Thermal power station - теплова електростанція
Thermal relay - теплове реле
Thermal replica - теплова модель
Thermocouple - термопара
Third harmonic - третя гармоніка
Three - element relay - трьохелементне реле
Three phase automatic reclosing control equipment - пристрій трифазного АПВ
Three - phase fault - трифазне ушкодження
Three - phase system diagram - схема електричної мережі в трифазному виконанні
Three - phase transformer - трифазний трансформатор
Three windings transformer  триобмотковий трансформатор
Threshold(of) sensitivity - поріг чутливості
Threshold value - порогова величина
Through fault current - наскрізний струм ушкодження(КЗ)
Thyristor - тиристор
Time characteristic - тимчасова залежність
Time constant - постійна часу
Time delay - витримка часу
Time - dependant - залежний від часу
Time differential - ступінь витримки часу
Time grading - настроєння защити по витримці часу спрацьовування
Time interval - ступінь часу
Time - lag relay - реле часу
Time schedule - графік роботи
Time to operate - час дії
Timing element - елемент часу
Toggle switch - перекидний перемикач
Total break time - повний час відключення
Total current - сумарний струм
Total loss of load - повне скидання навантаження
Traction substation - тягова підстанція
Transducer - датчик
Transductor - трансреактор
Transfer busbar - обхідна система шин
Transfer function - передатна функція
Transfers bars - обхідна система шин
Transformation of electricity - трансформація електричної енергії
Transformer bank - трансформаторна група
Transformer circuit - breaker - трансформаторний вимикач
Transformer protection - РЗ трансформатора
Transformer ratio - коефіцієнт трансформації трансформатора
Transformer substation - трансформаторна підстанція(ТП)
Transformer tap - відпаювання трансформатора
Transformer winding - обмотка трансформатора
Transformer with on - load tap changing - трансформатор зоблаштуванням РПН
Transformer with off - load tap changing - трансформатор з перемиканням відпаювань обмотки без навантаження
Transformer with regulation in phase - трансформатор з регулюванням напруги по фазі
Transformer with regulation in quadrature - трансформаторз регулюванням напруги по модулю
Transforming station - трансформаторна підстанція
Transient analysis - аналіз перехідного процесу
Transient fault - нестійке ушкодження
Transient feedback - гнучкий зворотний зв'язок
Transient performance - якість перехідного процесу
Transient phenomenon - перехідний процес
Transient reactance - перехідний реактанс
Transient response - перехідна характеристика
Transient short circuit - нестале КЗ
Transient short circuit current - перехідний струм КЗ
Transient stability - динамічна стійкість
Transient state - несталий режим
Transistor - транзистор
Translator(isolating transformer)  ізолюючий трансформатор
Transmission channel - передавальний канал
Transmission data rate - швидкість передачі даних
Transmission limit - межа передаваної потужності
Transmission line capability - пропускна спроможність ЛЕП
Transmission of electricity - передача електроенергії
Transmitter - передавач
Transposition - транспозиція
Transverse differential protection  поперечний диференціальний захист
Traveling wave - хвиля, що біжить
Treed system - радіально-магістральна (розгалужена) електрична мережа
Trip - відключити, подати команду на відключення
Trip a circuit breaker - подати команду на відключення вимикача(застосовується відносно реле)
Trip circuit - ланцюг відключення
Trip coil - котушка відключення
Trip command - команда відключення
Triple conductor - три дроти у фазі
Triple - frequency harmonic - третя гармоніка
Triple unit(Motor, Pump, Turbine)  вбудований агрегат(двигун, насос, турбіна)
Tripping relay - відключаюче реле
Tripping time - час спрацьовування
Trunk line - магістральна ЛЕП
Tuned circuit - резонансний контур
Tuning capacitor - подстроечный конденсатор
Tuning indicator - індикатор налаштування
Tuning range - діапазон налаштування
Turbine governor - регулятор турбіни
Turbogenerator  турбогенератор

Turbo - generator set - паротурбінний агрегат
Turn - виток
Turn - to - turn short circuit - междувиткове КЗ
Turn - fault - міжвиткове ушкодження(КЗ)
Turn - fault protection - захист від міжвиткових КЗ
Twin conductor - два дроти у фазі
Twisted conductor - скручений багатожильний провідник(дріт)
Twist joint - з'єднання скручуванням
Two - layer winding - двошарова обмотка
Two - way contact - двосторонній(перекидний) контакт
Two - way feed - двостороннє живлення
Two - stage relay - двопозиційне реле

U

Ultra - high voltage - надвисока напруга
Unattended substation - підстанція, що не обслуговується
Unbalance current - струм небаланса
Unbalanced conditions - несиметричний режим
Unbalanced short circuit - несиметричне КЗ
Unblocking  деблокування (розблокування)
Underdamping - слабке загасання
Under - excitation - недозбудження
Underfrequency load shedding - АЧР
Underfrequency relay - реле захисту від зниження частоти
Underground cable - кабельна лінія
Underground substation - підземна підстанція
Underground system - кабельна електрична мережа
Under...relay - реле мінімального принципу дії
Underreaching(for a distance protection system) -скорочена зона (для систем дистанційного захисту)
Unfaulted phase - неушкоджена фаза
Unidirectional - одного напряму
Unidirectional current - струм одного напряму
Unimeter - мультиметр
Uninterrupted operation - безперебійна робота
Uninterruptible power supply  гарантоване енергопостачання
Unload - розвантаження
Unloaded line - ненавантажена ЛЕП
Unmanned - без чергового персоналу
Unstable - нестійкий
Untapped - без відпаювань
Unwanted operation(of a protection equipment)  небажане спрацьовування(пристрою захисту)
Upper harmonics - вищі гармоніки
Urban network - міська розподільна мережа

V

Varistor - варистор
V - connection - з'єднання у відкритий трикутник
Vector group(of a transformer) - група з'єднання трансформатора
Voltage - напруга
Voltage balance - баланс напруги
Voltage balance relay - диференціальне реле напруги
Voltage build - up - наростання напруги
Voltage circuit - ланцюг напруги
Voltage deviation - відхилення напруги
Voltage direction - полярність напруги
Voltage divider - дільник напруги
Voltage division - ділення напруги
Voltage drop - падіння напруги
Voltage level - ступінь напруги
Voltage limiting - обмеження напруги
Voltage range - діапазон напруги

Voltage regulator - регулятор напруги
Voltage relay - реле напруги
Voltage restrained overcurrent relay - реле МТЗ з гальмуванням по напрузі
Voltage ripple - пульсація напруги
Voltage rise - підйом напруги
Voltage transformer - трансформатор напруги
Voltage transformer error - погрішність трансформатора напруги
Voltage trebling - потроєння напруги
Volt - ampere characteristic  вольтамперна характеристика(ВТХ)

W

Wall diagram - мнемосхема на диспетчерському щиті
Wattage - споживання активної потужності
Watt consumption - споживання активної потужності
Weighting factor - частковий коефіцієнт
Winding - обмотка
Winding path - напрям намотування обмотки
Wire - pilot - дротяний зв'язок в диференціальному захисті
Wire - wrap connection - накрутка
Wire wrapping - накрутка
Wiring(secondary wiring) - електропроводка допоміжних ланцюгів
Wiring - монтажна схема (монтаж)
Wiring blemish - дефект монтажу
Withdrawal from service - вивід з роботи
Working zone - робоча зона
Wye - delta - зірка-трикутник
Wye - delta connection - з'єднання зірка-трикутник
Wye - wye - зірка-зірка

 

Z

Z - connection - з'єднання зигзагом
Zero crossing - перехід через нуль
Zero drift - дрейф нуля
Zero error - зрушення нуля
Zero mark - нульова відмітка
Zero offset - зміщення нуля
Zero phase - sequence voltage - напруга нульової послідовності
Zero sequence component - складова нульової послідовності
Zero sequence current - струм нульової послідовності
Zero sequence impedance - імпеданс нульової послідовності
Zero sequence voltage relay - реле напруги нульової послідовності
Zone of protection - захисна зона

 

Список використаної літератури

 

  1. Cambridge English for Engineering // Mark Ibbotson. – CUP, 2008. – 112 p.
  2. Cambridge English for Scientists // Tamzen Armer. – CUP, 2011. – 128 p.
  3. Engineering 1 // P. Astley, L. Lansford. – OUP, 2013. – 136p.
  4. English for Science and Engineering // Ivor Williams. – Thomson Heinle & Heinle ELT, 2007. – 106 p.
  5. English for Science and Technology (Англійська мова для науковців) // Olga M. Ilchenko. – Київ, 1996. – 244с.
  6. English for the Energy Industry // Simon Campbell. – OUP, 2008. – 80 p.
  7. English reader. Physics./ Уклад.: А.Г.Авраменко, Ю.В.Гончарова.- К,: КПІ, 1998– 210 c.
  8. Korunets I.V. A course in the Theory and Practice of Translation: Підручник. - Вінниця: «Нова Книга», 2001. - 448 с.
  9. OXFORD English for Computing. Keith Boeckner, P. Charles Broun. Oxford University Press, 1995
  10. OXFORD English for Electrical and Mechanical Engineering Eric H. Glendinning, Norman Glendinning, Oxford University Press, 1995
  11. OXFORD English for Electronics Eric H. Glendinning, John Mc. Ewan Oxford University Press, 1995
  12. Oxford for Careers: Technology 2 // Eric H. Glendinning and Alison Pohl. – OUP, 2009. – 135 p.
  13. Professional English in Use Engineering: Technical English for Professionals // Ibbotson M. – CUP, 2010 – 144 p.
  14. Technical English: Vocabulary and Grammar // Brieger,N., Pohl, A. – Summer Publishing, 2001. – 148p.
  15. Агабекян І.П., Коваленко П.І. Англійський для технічних вузів. – К.: «Фенікс», 2008. – 320 с.
  16. Бахчисарайцева, М. Е. English for Power Engineering Students / М. Е. Бахчисарайцева, В. А. Каширіна, А. Ф. Антипова. – К.: Арій, 2007. – 155 с.
  17. Брискина К.С., Завадська М.Ф. Англійська мова для технічних вузів. – К.: В. школа,1987 – 337 с.
  18. Кабо, П. Д.  Popular Science Reader / П. Д. Кабо, С. Н. Фомічева. – К.: Освіта, 2003. – 114 с.
  19. Карабан В.І. Мейс Дж. Переклад з української мови на англійську мову. – Навч. посібник для студентів вищих закладів освіти. – Вінниця: Нова книга, 2003. – 608 с.
  20. Карабан В.І. Посібник-довідник з перекладу англійської науково-технічної літератури на українську мову. Частина І. Граматичні труднощі. – Вінниця: «Нова Книга», 2001. - 271 с.
  21. Комолова З. П. Популярна електроніка / З. П. Комолова, В. П. Новоселецька, Н. В. Новікова. – К.: ВШ, 2008. – 157 с.

22. Новий англо-український політехнічний словник. New English-Ukrainian Polytechnical Dictionary під редакцією Бутник В. В. – К.: "Арій", 2008. – 704 с.

  1. Орловська І.В., Самсонова Л.С., Скубріева А.І.Підручник англійської мови для студентів технічних університетів і ВНЗ.  - К.: ВШ, 2006. - 448с.
  2. Скороходько Є. Ф. Питання перекладу англійської технічної літератури (переклад термінів). Вид. КДУ, Київ, 2008. – 304с.
  3. Тарасова О.П., Шелягова Т.Г. English for Radioengineering students. К.: Науковий світ, 2007. – 304с.
  4. Чистик М.Я. Підручник англійської мови для політехнічних вузів. Мінськ: В.школа, 1988 – 137 c.
  5. Штульберг С. Я., Брискина К. С. Посібник по перекладу англійської технічної літератури. Київ: Арій, 2008. – 148 c.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

zip
Додано
16 лютого 2019
Переглядів
1567
Оцінка розробки
Відгуки відсутні
Безкоштовний сертифікат
про публікацію авторської розробки
Щоб отримати, додайте розробку

Додати розробку